精英家教网 > 初中数学 > 题目详情
13.如图,将三角形ABC沿BC方向平移到三角形DEF,若AD=1,CE=3,则梯形ABFD的面积与三角形ABC的面积比是(  )
A.2:1B.3:2C.4:3D.不能确定

分析 设出三角形ABC的高即可得到梯形的高,然后利用平移的性质结合二者的面积的计算公式表示出二者的面积,从而确定答案.

解答 解:∵三角形ABC沿BC方向平移到三角形DEF,
∴AD=CF=BE,
∵AD=1,CE=3,
∴BC=1+3=4,BF=BE+BC+CF=1+3+1=5,
设△ABC的BC边数的高为h,则梯形ABFD的高也为h,
∴梯形ABFD的面积与三角形ABC的面积比=$\frac{1}{2}$×(1+5)h:$\frac{1}{2}$×4h=3:2,
故选B.

点评 本题考查了平移的性质,平移前后对应线段平行且相等,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.计算:先化简,再求值:($\frac{2}{x+3}$-$\frac{1}{3-x}$)÷$\frac{x}{{x}^{2}-9}$,其中x=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE
求证:(1)AE=CF;
(2)AE∥CF
(3)∠AFE=∠CEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知线段m,n,利用尺规作线段AB,使它等于2m-n.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知|2017-a|+$\sqrt{a-2018}$=a,则a-20172的值为(  )
A.2017B.2018C.20172D.20182

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,点C在x轴正半轴上,点A在y轴正半轴上,抛物线y=-$\frac{3}{25}$x2+$\frac{6}{5}$x+3经过点A,B,抛物线的对称轴与x轴交于点D与AB交于点F.
(1)①抛物线的对称轴是x=5,点B的坐标是(10,3).
②将矩形ABCO沿着经过点D的直线折叠,使点O恰好落在边AB上点E处,求△ODE的周长;
(2)如图2,点M为OC上一点,过点M作MN⊥AB于点N,连接AM,且∠OAM=∠NAM,点P是线段AM上一个动点(不与点M重合),连接OP,OP所在直线与对称轴交于点Q,当P到点O,M,N三点的距离和最小时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,四边形ABCD中,AC=BD,∠1=∠2.求证:AB=CD.
小明经过思考,准备用平移的方法来解决这个问题,他过A作BD的平行线,过D作AB的平行线,二者交于点E,连接CE,如图2所示.
(1)请你使用小明的方法解决这个问题;
(2)请你借鉴小明的思路解决下面的问题:
如图3,△ABC中,AD是∠BAC的平分线,P为AD上一点,连接BP并延长交AC于E,连接CP并延长交AB于F,若BE=CF,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.问题探索:在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).
(1)分别求出线段AB中点,线段AC中点及线段CD中点的坐标,则线段AB中点的坐标与点A,B的坐标之间有什么关系?对线段AC中点和点A,C及线段CD中点和点C,D成立吗?
(2)已知点M(a,0),N(b,0),请写出线段MN的中点P的坐标($\frac{a+b}{2}$,0).
结论猜想:
(3)若M(x1,y1),N(x2,y2),则MN的中点P的坐标为($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$).
拓展应用:
(4)若在平面直角坐标系中的点M,点N的坐标分别为M(2,y),N(x,-2),且P为MN的中点,若将线段MN向右平移3个单位后,与点P对应的点为Q,则点Q的坐标为(6,4),则x=4,y=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)问题发现
如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;
①∠CDB的度数为60°;
②线段AE,CD之间的数量关系为AE=CD.
(2)拓展探究
如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.
①求∠CDB的大小;
②请判断线段BF,AD,CD之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,AC=2$\sqrt{2}$,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.

查看答案和解析>>

同步练习册答案