精英家教网 > 初中数学 > 题目详情
已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)求证:无论m为何值,方程总有一个固定的根;
(3)若m为整数,且方程的两个根均为正整数,求m的值.
分析:(1)根据b2-4ac与零的关系即可判断出的关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)有两个不相等的实数根的m的取值范围;
(2)用求根公式求得方程总有一个固定的根是1;
(3)利用(2)的解题结果x1=2-
3
m
必为整数,可得m=±1或m=±3,再根据方程两个根均为正整数,求得m的值.
解答:(1)解:∵方程有两个不相等的实数根,
∴(m-3)2>0且m≠0,
∴m的取值范围是m≠3且m≠0;

(2)证明:由求根公式,得x=
-b±
b2-4ac
2a
=
3(m-1)±(m-3)
2m

x1=
3m-3+m-3
2m
=
2m-3
m
=2-
3
m
x2=
3m-3-m+3
2m
=1

∴无论m为何值,方程总有一个固定的根是1;

(3)∵m为整数,且方程的两个根均为正整数,
x1=2-
3
m
必为整数,
∴m=±1或m=±3,
∵m≠3,
∴当m=1时,x1=-1;当m=-1时,x1=5;
当m=-3时,x1=3.
∴m=-1或m=-3.
点评:本题考查了根的判别式,在解一元二次方程的根时,利用根的判别式△=b2-4ac与0的关系来判断该方程的根的情况;同时考查了用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2-4ac的值(若b2-4ac<0,方程无实数根);③在b2-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求证:方程①有两个实数根;
(2)求证:方程①有一个实数根为1;
(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2(m+1)x+m2=0有两个整数根,m<5且m为整数.
(1)求m的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(m+1)x+m2的图象沿x轴向左平移4个单位长度,求平移后的二次函数图象的解析式;
(3)当直线y=x+b与(2)中的两条抛物线有且只有三个交点时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2x+c=0的一个实数根为3.
(1)求c的值;
(2)二次函数y=x2-2x+c,当-2<x≤2时,y的取值范围;
(3)二次函数y=x2-2x+c与x轴交于点A、B(A左B右),顶点为点C,问:是否存在这样的点P,以P为位似中心,将△ABC放大为原来的2倍后得到△DEF(即△EDF∽△ABC,相似比为2),使得点D、E恰好在二次函数上且DE∥AB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

同步练习册答案