精英家教网 > 初中数学 > 题目详情

已知直线l与x轴、y轴分别交于A(2,0)、B(0,2)两点,双曲线数学公式(k>0)在第一象限的一支与AB不相交,过双曲线上一点P作PM⊥x轴于M,PN⊥y轴于N,分别交AB于E、F.
(1)如果S△EOF=数学公式,PM=数学公式,求双曲线的解析式;
(2)当P在(1)中双曲线上移动,∠EOF的大小始终为45°不变,此时,双曲线上存在这样的点P,使OE=OF,求出此时点P的坐标.

解:(1)设直线l的解析式为y=kx+b(k≠0),
∵A(2,0)、B(0,2),
,解得
∴此直线的解析式为y=-x+2,
∵点E在直线l上,
∴设E(a,-a+2),
∵S△EOF=,PM=,PM⊥x轴于M,PN⊥y轴于N,
∴S△EOF=S△AOF-S△AOE=OA•PM-OA•ME
=×2×-×2×(-a+2)
=+a-2=
解得a=
∴E(),
∴P(),
∵点P在双曲线y=上,
∴k=×=2,
∴抛物线的解析式为:y=

(2)如图所示,过点O作OD⊥AB于点D,
∵OB=OA,
∴BD=AD,
∴当OE=OF时DE=DF,
∴BF=AE,
∵△BNF与△AME均是等腰直角三角形,
∴BN=NF=ME=AM,
∴ON=OM,即四边形NOMP是正方形,
设P(x,x),则x=,解得x=或x=-(舍去),
∴P().
分析:(1)先用待定系数法求出直线l的解析式,设出E点坐标,再根据S△EOF=S△AOF-S△AOE即可得出E点坐标,进而得出P点坐标,把P点坐标代入双曲线y=即可得出结论;
(2)过点O作OD⊥AB于点D,因为OB=OA,故BD=AD,当OE=OF时可得DE=DF,故可得出BF=AE,再根据△BNF与△AME均是等腰直角三角形可知BN=NF=ME=AM,故ON=OM,即四边形NOMP是正方形,设P(x,x),代入(1)中反比例函数的解析式即可得出x的值,进而得出结论.
点评:本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数及反比例函数的解析式、等腰三角形的性质等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的精英家教网方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM.
(1)求⊙M的半径.
(2)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0.
(1)如果m=-4,n=1,试判断△AMN的形状;
(2)如果mn=-4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;
(3)如图2,题目中的条件不变,如果mn=-4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;
(4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=x-1分别与x轴、y轴交于点A、点B,在这个平面内取一点P,使以A、B、P三点为顶点的三角形是等腰三角形,则点P的坐标不能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼和浩特)如图,抛物线y=ax2+bx+c(a<0)与双曲线y=
kx
相交于点A,B,且抛物线经过坐标原点,点A的坐标为(-2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC与△ABE的面积;
(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案