精英家教网 > 初中数学 > 题目详情

菱形ABCD的边长为6,∠ABC=120°,E、F分别是边AB,BC上的两个动点,且满足AE=BF.
(1)求DB的长;
(2)判断△DEF的形状,并说明理由;
(3)设△DEF的周长为L,求L的最小值.

解:(1)∵四边形ABCD是菱形
∴AD=AB,BD是∠ABC的角平分线
∴∠ABD=∠ADB=120°÷2=60°
∴△ABD是等边三角形
∴BD=AB=AD=6;

(2)△DEF是等边三角形
∵在△ADE与△BDF中,AD=BD,∠DAE=∠DBF=60°,AE=BF
∴△ADE≌△BDF(SAS)
∴DE=DF,∠ADE=∠BDF
∴∠ADE+∠EDB=∠BDF+∠EDB=60°
∴△DEF是等边三角形;

(3)当DE⊥AB时,DE最短,此时△DEF的周长最短
∵在RT△ADE中,sin60°=
∴DE=AD×sin60°=3
∵△DEF是等边三角形
∴L=3×3=9
分析:(1)根据菱形对角线平分且垂直的性质,求得BD;
(2)先证明△OCE≌△ODE,得DE=DF,∠ADE=∠BDF,从而得到∴△DEF是等边三角形;
(3)先确定条件,即当DE⊥AB时,DE最短,此时△DEF的周长最短,由三角函数求出DE,从而得出L的最小值.
点评:本题是菱形的性质与三角函数综合性的题目,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,菱形ABCD的边长为4,∠A=60°,以点A为圆心,AD长为半径画弧,以点B为圆心,BC长为半径画弧,则图中阴影部分的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、菱形ABCD的边长为24厘米,∠A=60°,质点P从点A出发沿着AB-BD-DA作匀速运动,质点Q从点D同时出发沿着线路DC-CB-BD作匀速运动.
(1)求BD的长;
(2)已知质点P、Q运动的速度分别为4cm/秒、5cm/秒,经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•泰宁县质检)如图菱形ABCD的边长为2,对角线BD=2,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由.同时指出△BCF是由△BDE经过如何变换得到?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•盘锦)已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.
(1)如图(1),求证:△AGD≌△AEB;
(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;
(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.

查看答案和解析>>

同步练习册答案