精英家教网 > 初中数学 > 题目详情

如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.
(3)求ED的长.

(1)证明:如图,连结OD,CD,则∠BDC=90°.
∴CD⊥AB.
∵AC=BC,∴AD=BD.
∴D是AB的中点.
∵O是BC的中点,
∴DO∥AC.
∵EF⊥AC于F.
∴EF⊥DO.
∴EF是⊙O的切线.

( 2 )解:连结BG,
∵BC是直径,∴∠BGC=90°=∠CFE.
∴BG∥EF.
∴sin∠E==
设CG=x,则AG=6-x.
在Rt△BGA中,BG2=BC2-CG2
在Rt△BGC中,BG2=BA2-AG2
∴62-x2=82-(6-x)2
解得:x=.即CG=
在Rt△BGC中.
∴sin∠E===

(3)解:由题意和(2)可得,OD=3
在Rt△ODE中
sin∠E==
∴OE=27,
∴DE==12
分析:(1)先连结OD,CD,由于AC=BC,得出D是AB的中点.由O是BC的中点,得出DO∥AC,可证EF是⊙O的切线;
(2)连接BG,可得BG∥EF,那么∠E=∠GBC,都表示出BG2,利用勾股定理求得CG的值,CG:BC即为sinE的值;
(3)利用(2)中所求得出sin∠E==,求出EO的长,再利用勾股定理求出DE的长.
点评:本题考查了切线的判定、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角进行转移是基本思路,求得CG的长是解决本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰三角形ABC的顶角为120°,底边BC=
3
2
,则腰长AB为(  )
A、
2
2
B、
3
2
C、
1
2
D、
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰三角形与正三角形的形状有着差异,我们把它与正三角形的接近程度称为等腰三角形的“正度”,在研究“正度”时,应符合下面四个条件:①“正度”的值是非负数;②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
设等腰三角形的底和腰分别为a,b,底角和顶角分别为α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且当两个等腰三角形相似时,它们的底角相等,显然,它们的“正度”|sinα-
3
2
|
也相等,当α=60°时,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因为此时正三角形的正度是1!
解答下列问题:
甲同学认为:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同学认为:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教网(1)他们的说法合理吗?为什么?
(2)对你认为不合理的方案加以改进,使其合理;
(3)请你再给出一种衡量等腰三角形“正度”的合理的表达式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,
(1)求证:四边形EBFC是菱形;
(2)如果∠BAC=∠ECF,求证:AC⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰三角形ABC(AB=AC)的底角为50°,绕点A逆时针旋转一定角度后得△AB′C′,那么△AB′C′绕点A旋转
40
40
度后AC⊥B′C′.

查看答案和解析>>

同步练习册答案