【题目】在一堂关于“折纸问题”的数学综合实践探究课中,小明同学将一张矩形ABCD纸片,按如图进行折叠,分别在BC、AD两边上取两点E,F,使CE=AF,分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C′DE与△A′BF,且边C′E与A′B交于点G,边A′F与C′D交于一点H.已知tan∠EBG=,A′G=6,C′G=1,则矩形纸片ABCD的周长为 .
【答案】62.
【解析】
试题分析:延长BA′交CD于M,作MN⊥C′D于N,由矩形的性质得出∠A=∠C=90°,AD=BC,AB=CD,由折叠的性质得出∠C′=∠C=90°,∠A′=∠A=90°,CE=C′E,AB=A′B,∠CDE=∠C′DE,∠CED=∠C′ED,∠ABF=∠A′BF,∠AFB=∠A′FB,由SAS证明△ABF≌△CDE(SAS),得出∠ABF=∠CDE,∠CED=∠AFB,由ASA证明△BEG≌△DFH,得出∠BGE=∠DHF,证出四边形MNC′G是矩形,得出MN=C′G=1,∠GMN=90°,设EG=3x,BG=4x,则BE=5x,CE=C′E=3x+1,CD=AB=A′B=4x+6,由三角函数求出DN=,由勾股定理得出DM=,再由三角函数得出方程,解方程求出x=2,得出AB=CD=14,AD=BC=17,即可得出矩形ABCD的周长.∴矩形ABCD的周长=2×(14+17)=62.
故答案为:62.
科目:初中数学 来源: 题型:
【题目】已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC是( )
A.直角三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C在x轴的负半轴,抛物线y=﹣(x﹣2)2+k过点A.
(1)求k的值;
(2)若把抛物线y=﹣(x﹣2)2+k沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点C.试判断点B是否落在平移后的抛物线上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(-4,5),C(-1,3).
(1)请在如图所示的网格内作出x轴、y轴;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)写出点B1的坐标并求出△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣3,0)和点B,与y轴交于点C(0,3),顶点为点D,对称轴DE交x轴于点E,连接AD,AC,DC.
(1)求抛物线的函数表达式.
(2)判断△ADC的形状,并说明理由.
(3)对称轴DE上是否存在点P,使点P到直线AD的距离与到x轴的距离相等?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
(1)求∠EBC的度数;
(2)求证:BD=CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com