精英家教网 > 初中数学 > 题目详情

已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;
(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.
作业宝

解:(1)连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;

(2)如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF=90°-∠B,
∴∠AEF=∠ADE+∠DAE,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF+∠B=180°,
∴∠BAF=∠DAE.
分析:(1)连接OC,易得OC∥AD,根据平行线的性质就可以得到∠DAC=∠ACO,再根据OA=OC得到∠ACO=∠CAO,就可以证出结论;
(2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,继而证得结论.
点评:此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l与坐标轴相交于点A(2,0)、B(0,-3).
(1)求直线l的函数关系式;
(2)利用函数图象写出当函数值y>0时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB与x轴交于A(6,0)点,与y轴交于B(0,10)点,点M的坐标为(0,4),点P(x,y精英家教网)是折线O→A→B上的动点(不与O点、B点重合),连接OP,MP,设△OPM的面积为S.
(1)求S关于x的函数表达式,并求出x的取值范围;
(2)当△OPM是以OM为底边的等腰三角形时,求S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•哈尔滨模拟)已知直线AB与⊙O交于A、B两点,P是直线AB上一点,若⊙O的半径是5,PB=3,AB=8,则tan∠OPA的值是
3或
3
7
3或
3
7

查看答案和解析>>

科目:初中数学 来源: 题型:

平面内,已知直线a与b平行,如果直线a与c垂直,那么直线b与c的位置关系是
b⊥c
b⊥c
;如果直线a与c平行,那么直线b与c的位置关系是
b∥c
b∥c

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB与CD相交于点O,OE⊥CD,OF平分∠BOE,若∠AOC=∠EOF,
(1)求∠AOC的度数;
(2)写出∠EOF的余角和补角.

查看答案和解析>>

同步练习册答案