精英家教网 > 初中数学 > 题目详情
27、问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
Ⅰ.如图①,在正三角形△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN.
Ⅱ.如图②,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
任务要求:
(1)请你从Ⅰ、Ⅱ两个命题中选择一个进行证明.
(2)如图,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否还成立?若成立,请给予证明;若不成立,请说明理由.
分析:(1)正三角形ABC中,可通过全等三角形来证明BM=CN,由于∠BON=∠MBC+∠BCO=60°,而∠ACB=∠ACN+∠OCB=60°,因此∠ACN=∠MBC,又知道∠A=∠BCM=60°,AC=BC,因此△ACN≌△CBM,可得出BM=CN;(2)正方形和正五边形的证明过程与正三角形的一样,都是通过全等三角形来得出线段的相等,证三角形的过程中都是根据∠BON和多边形的内角相等得出一组两三角形中的一组对应角相等,然后根据正多边形的内角和边相等,得出△BCM和△CND全等,进而得出BM=CN.
解答:解:(1)选命题Ⅰ.
证明:在图1中,∵△ABC是正三角形,
∴BC=CA,∠BCM=∠CAN=60°.
∵∠BON=60°,
∴∠CBM+∠BCN=60°.
∵∠BCN+∠ACN=60°,
∴∠CBM=∠ACN.
∴△BCM≌△CAN(ASA).
∴BM=CN.
选命题Ⅱ.
证明:在图2中∵四边形ABCD是正方形,
∴BC=CD,∠BCM=∠CDN=90°.
∵∠BON=90°,
∴∠CBM+∠BCN=90°.
∵∠BCN+∠DCN=90°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.
(2)BM=CN成立.
证明:在图3中,∵五边形ABCDE是正五边形,
∴BC=CD,∠BCM=∠CDN=108°.
∵∠BON=108°,
∴∠CBM+∠BCN=108°.
∵∠BCN+∠DCN=108°,
∴∠CBM=∠DCN.
∴△BCM≌△CDN(ASA).
∴BM=CN.
点评:本题主要考查了全等三角形,正多边形等几何知识,是一道几何型探究题.本题是一道非常典型的几何探究题,很好地体现了从一般到特殊的数学思想方法,引导学生渐渐地从易走到难,是新课标形势下的成熟压轴题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:
如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.
该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.
请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
精英家教网精英家教网
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:

①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年江西省中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•江西)问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:

①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案