精英家教网 > 初中数学 > 题目详情

【题目】我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p、q两因数之差的绝对值最小,我们就称p×qn的最佳分解.并规定:F(n)=,例如12可以分解成1×12,2×6,或3×4,因为12﹣1>6﹣2>4﹣3,所以3×412的最佳分解,所以F(12)=

(1)求F(24)和F(48);

(2)如果一个正整数a是另外一个正整数b的平方,用字母表示为   ;这时我们称正整数a是完全平方数.若m是一个完全平方数,求F(m)的值.

【答案】(1)F(24)=,F(48)=;(2)a=b2,F(m)=1.

【解析】

(1)先将24,48分解因数,进而找出24,48的最佳分解即可

(2)根据题意直接填空,在根据(1)的特点找出m的最佳分解即可得出结论.

(1)∵24=1×24=2×12=3×8=4×6,而24﹣1>12﹣2>8﹣3>6﹣4,4×624的最佳分解,∴F(24)==

∵48=1×48=2×24=3×16=4×12=6×8,而48﹣1>24﹣2>16﹣3>12﹣4>8﹣2,6×848的最佳分解,∴F(48)==

(2)∵一个正整数a是另外一个正整数b的平方,

∴a=b2

∵m是一个完全平方数,

m=x2(x>0),

∴x·xm的最佳分解,

∴F(m)==1.

故答案为:(1)F(24)=,F(48)=;(2)a=b2,F(m)=1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,函数y=-x与函数y=-的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,求四边形ACBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个棱长为的正方体的每个面等分成个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去个小正方体),所得到的几何体的表面积是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

(1)探究:

①数轴上表示52的两点之间的距离是多少

②数轴上表示﹣2和﹣6的两点之间的距离是多少

③数轴上表示﹣43的两点之间的距离是多少

(2)归纳:

一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|

(3)应用:

①如果表示数a3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值

②若数轴上表示数a的点位于﹣43之间,求|a+4|+|a﹣3|的值.

③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.

(4)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1,A2,A3,A4,A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c图象对称轴是直线x=1,则下列结论:
①a<0,b<0,
②2a﹣b>0,
③a+b+c>0,
④a﹣b+c<0,
⑤当x>1时,y随x的增大而减小,
其中正确的是(

A.①②③
B.②③④
C.③④⑤
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习有理数运算时发现以下三个等式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4

(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:

因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.

请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;

(2)通过上述验证,请你猜想直接写出结果:(ab)365等于多少,归纳得出:(ab)n等于多少(n为正整数);

(3)请应用(2)中归出的结论计算:(2017×112018

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC,B,C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=( )

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.

1)试用含的代数式填空:

①涨价后,每个台灯的销售价为 元;

②涨价后,商场的台灯平均每月的销售量为 台;

③涨价后,商场每月销售台灯所获得总利润为 元.

2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说在原售价每台50元的基础上再上涨40元,可以完成任务,商场经理乙说不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了,试判断经理甲与乙的说法是否正确,并说明理由.

查看答案和解析>>

同步练习册答案