
½â£º£¨1£©¡ßy=ax
2+x+cµÄͼÏó¾¹ýA£¨-2£¬0£©£¬C£¨0£¬3£©£¬
¡àc=3£¬a=-

£¬
¡àËùÇó½âÎöʽΪ£ºy=-

x
2+x+3£¬
´ð£ºÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽÊÇy=-

x
2+x+3£®
£¨2£©½â£º£¨6£¬0£©£¬
¹Ê´ð°¸Îª£º£¨6£¬0£©£®
£¨3£©½â£ºÔÚRt¡÷AOCÖУ¬
¡ßAO=2£¬OC=3£¬¡àAC=

£¬
£¬¢Ùµ±P
1A=ACʱ£¨P
1ÔÚxÖáµÄ¸º°ëÖᣩ£¬P
1£¨-2-

£¬0£©£»
¢Úµ±P
2A=ACʱ£¨P
2ÔÚxÖáµÄÕý°ëÖᣩ£¬P
2£¨

-2£¬0£©£»
¢Ûµ±P
3C=ACʱ£¨P
3ÔÚxÖáµÄÕý°ëÖᣩ£¬P
3£¨2£¬0£©£»
¢Üµ±P
4C=P
4Aʱ£¨P
4ÔÚxÖáµÄÕý°ëÖᣩ£¬
ÔÚRt¡÷P
4OCÖУ¬ÉèP
4O=x£¬Ôò£¨x+2£©
2=x
2+3
2½âµÃ£ºx=

£¬
¡àP
4£¨

£¬0£©£»
´ð£ºÔÚxÖá´æÔÚÒ»µãP£¬Ê¹¡÷ACPÊǵÈÑüÈý½ÇÐΣ¬Âú×ãÌõ¼þµÄPµã×ø±êÊÇ£¨-2-

£¬0£©»ò£¨

-2£¬0£©»ò£¨2£¬0£©»ò£¨

£¬0£©£®
£¨4£©½â£ºÈçͼ£¬ÉèQµã×ø±êΪ£¨x£¬y£©£¬ÒòΪµãQÔÚy=-

x
2+x+3ÉÏ£¬
¼´£ºQµã×ø±êΪ£¨x£¬-

x
2+x+3£©£¬
Á¬½ÓOQ£¬
S
ËıßÐÎABQC=S
¡÷AOC+S
¡÷OQC+S
¡÷OBQ£¬
=3+

x+3£¨-

x
2+x+3£©
=-

x
2+

x+12£¬
¡ßa£¼0£¬
¡àS
ËıßÐÎABQC×î´óÖµ=

£¬
Qµã×ø±êΪ£¨3£¬

£©£¬
´ð£ºÔÚµÚÒ»ÏóÏÞÖеÄÅ×ÎïÏßÉÏ´æÔÚÒ»µãQ£¬Ê¹µÃËıßÐÎABQCµÄÃæ»ý×î´ó£¬Qµã×ø±êÊÇ£¨3£¬

£©£¬Ãæ»ýµÄ×î´óÖµÊÇ

£®
·ÖÎö£º£¨1£©ÒòΪy=ax
2+x+cµÄͼÏó¾¹ýA£¨-2£¬0£©£¬C£¨0£¬3£©£¬´úÈëÇó³öc¡¢aµÄÖµ£¬¼´¿ÉµÃµ½´ð°¸£»
£¨2£©°Ñy=0´úÈëÇó³öxµÄÖµ£¬¼´¿ÉµÃµ½´ð°¸£»
£¨3£©ÔÚRt¡÷AOCÖиù¾Ý¹´¹É¶¨ÀíÇó³öAC£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊÇó³ö£¬¢Ùµ±P
1A=ACʱ£¨P
1ÔÚxÖáµÄ¸º°ëÖᣩ£¬P
1£¨-2-

£¬0£©£»¢Úµ±P
2A=ACʱ£¨P
2ÔÚxÖáµÄÕý°ëÖᣩ£¬P
2£¨

-2£¬0£©£»¢Ûµ±P
3C=ACʱ£¨P
3ÔÚxÖáµÄÕý°ëÖᣩ£¬P
3£¨2£¬0£©£»¢Üµ±P
4C=P
4Aʱ£¨P
4ÔÚxÖáµÄÕý°ëÖᣩ£¬P
4£¨

£¬0£©£¬¼´¿ÉµÃ³ö´ð°¸£»
£¨4£©ÉèQµã×ø±êΪ£¨x£¬y£©£¬ÒòΪµãQÔÚy=-

x
2+x+3ÉÏ£¬µÃ³öQµã×ø±êΪ£¨x£¬-

x
2+x+3£©£¬Á¬½ÓOQ£¬¸ù¾ÝS
ËıßÐÎABQC=S
¡÷AOC+S
¡÷OQC+S
¡÷OBQ£¬´úÈëÇó³ö¼´¿É£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶ÔÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬µÈÑüÈý½ÇÐεÄÅж¨£¬Èý½ÇÐεÄÃæ»ý£¬¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬¶þ´Îº¯ÊýµÄ×îÖµµÈ֪ʶµãµÄÀí½âºÍÕÆÎÕ£¬×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£®ÌâÐͽϺã¬×ÛºÏÐÔÇ¿£®