精英家教网 > 初中数学 > 题目详情
(2007•南宁)如图是用七巧板拼成的一艘帆船,其中全等的三角形共有    对.
【答案】分析:根据三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
解答:解:根据给出的七巧板拼成的一艘帆船,可知图形中有5个等腰直角三角形,1个平行四边形,1个正方形.通过观察可知两个最大的等腰直角三角形和两个最小的等腰直角三角形分别全等,因此全等的三角形共有2对.
点评:本题考查了三角形全等的判定方法;题目比较容易,考查识别图形的全等.掌握全等三角形的判断方法是关键.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的对称》(04)(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《四边形》(10)(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《平面直角坐标系》(02)(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省盐城市盐城中学初三年级中考模拟数学试卷1(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年广西南宁市中考数学试卷(解析版) 题型:解答题

(2007•南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案