精英家教网 > 初中数学 > 题目详情

不解方程,判别下列方程的根的情况:

(1)2x2+3x-4=0;(2)16y2+9=24y;(3)5(x2+1)-7x=0.

答案:
解析:

  (1)∵a=2,b=3,c=-4,∴b2-4ac-32-4×2×(-4)=41>0.

  ∴方程有两个不相等的实数根.

  (2)∵a=16,b=-24,c=9,∴b2-4ac=(-24)2-4×16×9=0.

  ∴方程有两个相等的实数解.

  (3)将原方程化为一般形式5x2-7x+5=0.

  ∵a=5,b=-7,c=5,∴b2-4ac=(-7)2-4×5×5=49-100=-51<0.

  ∵方程无实数解.


提示:

  分析:要判定上述方程的根的情况,只要看根的判别式Δ=b2-4ac的值的符号就可以了.

  注意:对有些方程要先将其整理成一般形式,再正确确定a,b,c的符号.

  方法提炼:确定a,b,c值时,先要将方程化为一般式,且不要把它们的符号弄错.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

不解方程,判别下列方程的根的情况:
(1)2x2+3x-4=0;
(2)16y2+9=24y;
(3)
3
x2-
2
x+2=0;
(4)3t2-3
6
t+2=0;
(5)5(x2+1)-7x=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

83、不解方程,判别下列方程根的情况.
(1)2x2-x=0
(2)x(2x-4)=5-8x

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,再解题
用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移项,得ax2+bx=-c,
方程两边除以a,得x2+
b
a
x=-
c
a

方程两边加上(
b
2a
)2
,得x2+
b
a
x+(
b
2a
)2=-
c
a
+(
b
2a
)2
,即(x+
b
2a
)2=
b2-4ac
4a

因为a≠0,所以4a2>0,从而当b2-4ac>0时,方程右边是一个正数,正数的平方根有两个,因此方程有两个不相等的实数根;当b2-4ac=0时,方程右边是零,因此方程有两个相等的实数根;当b2-4ac>0时,方程右边是一个负数,而负数没有平方根,因此方程没有实数根.
所以我们可以根据b2-4ac的值来判断方程的根的情况,请利用上述论断,不解方程,判别下列方程的根的情况.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移项,得ax2+bx=-c,
方程两边除以a,得数学公式
方程两边加上数学公式,得数学公式,即数学公式
因为a≠0,所以4a2>0,从而当b2-4ac>0时,方程右边是一个正数,正数的平方根有两个,因此方程有两个不相等的实数根;当b2-4ac=0时,方程右边是零,因此方程有两个相等的实数根;当b2-4ac>0时,方程右边是一个负数,而负数没有平方根,因此方程没有实数根.
所以我们可以根据b2-4ac的值来判断方程的根的情况,请利用上述论断,不解方程,判别下列方程的根的情况.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

查看答案和解析>>

科目:初中数学 来源:《22.2 降次-解一元二次方程》2009年同步练习(2)(解析版) 题型:解答题

不解方程,判别下列方程根的情况.
(1)2x2-x=0
(2)x(2x-4)=5-8x

查看答案和解析>>

同步练习册答案