精英家教网 > 初中数学 > 题目详情
1.如图,在△ABC中,∠BAC的平分线交BC于点D.
(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;
(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.

分析 (1)先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,由直角三角形的性质求出∠BAE的度数,根据∠EAD=∠BAD-∠BAE即可得出结论;
(2)首先利用三角形内角和定理可求出∠BAC的度数,进而可求出∠BAD的度数,由题意可知∠BAG=$\frac{1}{4}$∠BAC,再利用已知条件和三角形外角和定理即可求出∠G的度数.

解答 解:(1)∵在△ABC中,∠B=62°,∠C=38°,
∴∠BAC=180°-62°-38°=80°.
∵∠BAC的平分线交BC于点D,
∴∠BAD=$\frac{1}{2}$∠BAC=40°.
∵AE⊥BC于点E,
∴∠AEB=90°,
∴∠BAE=90°-62°=28°,
∴∠EAD=∠BAD-∠BAE=40°-28°=12°;

(2)∵∠B=x°,∠C=y°,
∴∠BAC=180°-x°-y°,
∵∠BAC的平分线交BC于点D,
∴∠BAD=$\frac{1}{2}$∠BAC=$\frac{1}{2}$(180°-x°-y°),AG平分∠BAD,
∴∠BAG=$\frac{1}{2}$∠BAD=$\frac{1}{4}$(180°-x°-y°),
∵∠BDF=∠BAD+∠B,
∴∠G=$\frac{1}{2}$∠BDF-∠GAD=$\frac{1}{2}$x°,

点评 本题考查角平分线的定义、三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.因式分解的结果是(x+y-z)(x-y+z)的多项式是(  )
A.x2-(y+z)2B.(x-y)2-z2C.-(x-y)2+z2D.x2-(y-z)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在边长为$6\sqrt{2}$的正方形ABCD中,E是边CD的中点,F在BC边上,且∠EAF=45°,连接EF,则BF的长为(  )
A.$2\sqrt{2}$B.3C.$3\sqrt{2}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:P是正方形ABCD对角线AC上一点,PE⊥AB,PF⊥BC,E、F分别为垂足.
(1)求证:DP=EF.
(2)试判断DP与EF的位置关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,M,N分别是AE、PE的中点,则随着点E的运动,线段MN长为(  )
A.$\sqrt{10}$B.4$\sqrt{5}$C.2$\sqrt{10}$D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.一个整数的所有正约数之和可以按如下方法求得,如:
6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;
12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;
36=22×32,则36的所有正约数之和
(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.
参照上述方法,那么200的所有正约数之和为(  )
A.420B.434C.450D.465

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)$\sqrt{45}$-18$\sqrt{\frac{1}{27}}$-3$\sqrt{3}$
(2)化简:1-$\frac{a-2}{a}$÷$\frac{{a}^{2}-4}{{a}^{2}+a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,将第一个图(图①)所示的等边三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小等边三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小等边三角形按同样的方式进行分割,…,则得到的第2016个图中,共有8061个等边三角形.

查看答案和解析>>

同步练习册答案