精英家教网 > 初中数学 > 题目详情
已知:如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=4
3
,以AC为直径的⊙O交AB于点D,点E是BC的中点,连接OD,OB,DE.
(1)求证:OD⊥DE;
(2)求sin∠ABO的值.
(1)证明:连接CD,∵AC是直径,∴∠ADC=∠BDC=90°,(2分)
∵E是BC的中点,
∴DE=BE=EC.(3分)
∵OA=OD,DE=BE,
∴∠ADO=∠A,∠DBE=∠BDE.(4分)
∵∠DBE+∠A=90°,
∴∠BDE+∠ADO=90°,(5分)
∴∠EDO=90°,
∴OD⊥DE.(6分)

(2)过O作OF⊥AD;(7分)
∵在Rt△ABC中,tanA=
BC
AC
=
3

∴∠A=60°,∴△AOD是边长为2的等边三角形,
∴OF=
3
.(8分)
在Rt△BOC中,BO=
4+48
=2
13
,(9分)
∴sin∠ABO=
OF
OB
=
3
2
13
=
39
26
.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦AC与AB成30°的角,CD与⊙O相切于C,交AB的延长线于D.求证:AC=CD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,CO⊥AB于点O,CD是⊙O的切线,切点为D.连接BD,交OC于点E.
(1)求证:∠CDE=∠CED;
(2)若AB=13,BD=12,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径为2cm,过点O向直线l引垂线,垂足为A,OA的长为3cm,将直线l沿OA方向移动,使直线l与⊙O相切,那么平移的距离为(  )
A.1cmB.3cmC.5cmD.1cm或5cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA为⊙O的切线,A为切点,PBC为割线,∠APC的平分线PF交AC于点F,交AB于点E.
(1)求证:AE=AF;
(2)若PB:PA=1:2,M是
BC
上的点,AM交BC于D,且PD=DC,试确定M点在BC上的位置,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=
3
,BD=1,求△DEC外接圆的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.
(1)当点P在AB延长线上的位置如图(1)所示时,连接AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;
(2)当点P的位置发生改变时(如图(2)),由以上的过程形成的角∠CDP的度数是否发生变化?请对你的猜想加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AD是⊙O的切线,D为切点,过点A引⊙O的割线ABC,依次交⊙O于点B和点C,若AC=4,AD=2,则AB等于(  )
A.
1
2
B.1C.
2
D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:PA是⊙O的切线,A为切点,PBC是过圆心的割线,PA=10,PB=5,则tan∠PAB的值为______.

查看答案和解析>>

同步练习册答案