【题目】如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.
【答案】100°.
【解析】
试题分析:设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°-∠B-∠BAC=100°.
试题解析:设∠BAD=x.
∵AD平分∠BAC,
∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.
∵AC=BC,
∴∠B=∠BAC=2x.
∵∠ADC=∠B+∠BAD=60°,
∴2x+x=60°,
∴x=20°,
∴∠B=∠BAC=40°.
在△ABC中,∵∠BAC+∠B+∠C=180°,
∴∠C=180°-∠B-∠BAC=100°.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①② B.②③ C.①③ D.①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com