精英家教网 > 初中数学 > 题目详情
已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作精英家教网EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.
(1)求证:四边形AEPM为菱形;
(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?
分析:(1)有一组邻边相等的平行四边形为菱形,在本题中,可证出四边形AEPM为平行四边形,关键是找一组邻边相等,∵AD平分∠BAC再者PE∥AM所以可证∠EAP=∠EPA即AE=EP,所以为菱形;
(2)S菱形AEPM=EP•h,S平行四边形EFBM=EF•h,若菱形AEPM的面积为四边形EFBM面积的一半,则EP=
1
2
EF,所以,P为EF中点时,S菱形AEPM=
1
2
S四边形EFBM
解答:(1)证明:∵EF∥AB,PM∥AC,
∴四边形AEPM为平行四边形.
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∵AD⊥BC(三线合一的性质),
∵∠BAD=∠EPA,
∴∠CAD=∠EPA,
∵EA=EP,
∴四边形AEPM为菱形.

(2)精英家教网解:P为EF中点时,S菱形AEPM=
1
2
S四边形EFBM
∵四边形AEPM为菱形,
∴AD⊥EM,
∵AD⊥BC,
∴EM∥BC,
又∵EF∥AB,
∴四边形EFBM为平行四边形.
作EN⊥AB于N,则S菱形AEPM=EP•EN=
1
2
EF•EN=
1
2
S四边形EFBM
点评:此题主要考查了菱形的判定,以及平行四边形的性质,题型比较新颖.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、(1)如图,△ABC纸片中,∠A=36°,AB=AC,请你剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形.请画出示意图,并标明必要的角度;
(2)已知等腰△ABC中,AB=AC,D为BC边上一点,连接AD,若△ACD与△ABD都是等腰三角形,则∠B的度数是
45°或36°
;(请画出示意图,并标明必要的角度)
(3)现将(1)中的等腰三角形改为△ABC中,∠A=36°,从点B出发引一直线可分成两个等腰三角形,则原三角形的最大内角的所有可能值是
72°、108°、90°、126°
.(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图:已知等腰△ABC中,腰AB=AC=13cm,底BC=24cm,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•潜江模拟)已知等腰△ABC中,AD⊥BC于点D,且AD=
1
2
BC,则△ABC底角的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC中,AB=AC=13,BC=10
(1)如图①,△ABC的面积=
60
60
,腰AC上的高BD=
120
13
120
13

(2)如图②,P是底边BC上任意一点,PE⊥AB于E,PF⊥AC于F,连接AP,不难发现:△ABP的面积+△ACP的面积=△ABC的面积,据此式,你能求出PE+PF等于多少吗?你有什么发现?
(3)如图③四边形BCGH是形状、大小一定的等腰梯形,点P是下底BC上一动点,试问:点P到两腰的距离之和是否为一定值?简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC中,AB=AC,若AB的垂直平分线与边AC所在直线相交所得锐角为40°,则等腰△ABC的底角∠B的大小为
65°或25°
65°或25°

查看答案和解析>>

同步练习册答案