精英家教网 > 初中数学 > 题目详情
精英家教网在Rt△ABC中,∠C=90°,AC=15,BC=12.
(1)求AB的长;
(2)求sinA、cosA的值;
(3)求sin2A+cos2A的值;
(4)比较sinA、cosB的大小.
分析:根据题中所给的条件,在直角三角形中解题,根据角的正弦值与三角形边的关系及勾股定理,然后再代入三角函数进行一一求解.
解答:解:(1)由勾股定理得,
AB=
AC2+BC2
=
152+122
=
369
=3
41


(2)在Rt△ABC中有,
cosA=
AC
AB
=
15
3
41
=
5
41
41

sinA=
BC
AB
=
12
3
41
=
4
41
41


(3)在Rt△ABC中有,
sin2A+cos2A=(
5
41
41
2+(
4
41
41
2=1;

(4)由上题值,sinA>cosB.
点评:本题考查了解直角三角形的能力,主要考查解直角三角形的定义,由直角三角形已知元素求未知元素的过程,只要理解直角三角形中边角之间的关系即可求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案