精英家教网 > 初中数学 > 题目详情
(2013•河北)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧
MN
分别交OA,OB于点M,N.
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧
MN
上,当△AOQ的面积最大时,直接写出∠BOQ的度数.
分析:(1)首先根据已知得出∠AOP=∠BOP′,进而得出△AOP≌△BOP′,即可得出答案;
(2)利用切线的性质得出∠ATO=90°,再利用勾股定理求出AT的长,进而得出TH的长即可得出答案;
(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.
解答:(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,
∠BOP′=∠POP′+∠BOP=80°+∠BOP,
∴∠AOP=∠BOP′,
∵在△AOP和△BOP′中
OA=OB
∠AOP=∠BOP′
OP=OP′

∴△AOP≌△BOP′(SAS),
∴AP=BP′;

(2)解:如图1,连接OT,过点T作TH⊥OA于点H,
∵AT与
MN
相切,
∴∠ATO=90°,
∴AT=
OA2-OT2
=
102-62
=8,
1
2
×OA×TH=
1
2
×AT×OT,
1
2
×10×TH=
1
2
×8×6,
解得:TH=
24
5
,即点T到OA的距离为
24
5


(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;
理由:∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,
当Q点在优弧
MN
右侧上,
∵OQ⊥OA,
∴QO是△AOQ中最长的高,则△AOQ的面积最大,
∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,
综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.
点评:此题主要考查了圆的综合应用以及切线的判定与性质以及全等三角形的判定与性质等知识,根据数形结合进行分类讨论得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=
95
95
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北)如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1
将C1绕点A1旋转180°得C2,交x轴于点A2
将C2绕点A2旋转180°得C3,交x轴于点A3

如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=
2
2

查看答案和解析>>

同步练习册答案