精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是⊙O的切线;
(2)设D是弧AC的中点,连接BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.
①求证:FD=FG;
②若BC=4,AB=6,试求AE的长.

(1)证明:∵AB是直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°.
∵∠MAC=∠ABC,
∴∠MAC+∠CAB=90°,即MA⊥AB,
∴MN是⊙O的切线.

(2)①证明:∵D是弧AC的中点,
∴∠DBC=∠ABD,
∵AB是直径,
∴∠CBG+∠CGB=90°;
∵DE⊥AB,
∴∠FDG+∠ABD=90°,
∵∠DBC=∠ABD,
∴∠FDG=∠CGB=∠FGD,
∴FD=FG.

②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.
∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,
∴DE=DH.
∴△BDE≌△BDH.
∴BE=BH.
∵D是弧AC的中点,
∴AD=DC.
∴Rt△ADE≌Rt△CDH.
∴AE=CH.
∴BE=AB-AE=BC+CH=BH,即6-AE=4+AE,
∴AE=1.
分析:(1)即证∠MAC+∠CAB=90°.因为AB为直径,所以∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC得证.
(2)①证明∠BDE=∠DGF即可.∠BDE=90°-∠ABD;∠DGF=∠CGB=90°-∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.问题得证.
②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,得AE=CH.根据AB=BH求解.
点评:此题考查了切线的判定、等腰三角形的判定、三角形全等等知识点,综合性强;特别是最后一个问题构造全等三角形求解,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案