精英家教网 > 初中数学 > 题目详情

如图,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.

15
分析:根据等腰梯形的性质可得到DE将梯形分为一个平行四边形和一个等边三角形,则此时△CDE的周长就不难求得了.
解答:∵AD∥BC,AB∥DE
∴ABED是平行四边形
∴DE=CD=AB=6,EB=AD=5
∴CE=8-5=3
∴△CDE的周长是6+6+3=15
点评:此题主要考查了等腰梯形的性质和平行四边形的判定及性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周长为40cm,则CD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求证:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•昌平区二模)已知:如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求证:AB=AD;
(2)求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,对角线BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度数; 
(2)求梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延长BC到E,使CE=AD.
(1)求证:BD=DE;
(2)当DC=2时,求梯形面积.

查看答案和解析>>

同步练习册答案