精英家教网 > 初中数学 > 题目详情

已知m、n满足:。完成下列各题:

(1)求的值;

(2)的平方根是多少?

(3)你能将代数式分解因式吗?

解:在Rt△ADC中,

AC=AD+CD=6+8=100(勾股定理),……………(1分)

∴ AC=10.

∵ AC+BC=10+24=676=AB,……………(2分)

∴ △ACB为直角三角形(如果三角形的三边长a、 b、 c有关系: a+b=c,那么这个三角形是直角三角形),………………………………………………(1分)

×10×24-×6×8=96(m).………………(2分)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某小型开关厂今年准备投入一定的经费用于现有生产设备的改造以提高经济效益.通过测算:今年开关的年产量y(万只)与投入的改造经费x(万元)之间满足3-y与x+1成反比例,且当改造经费投入1万元时,今年的年产量是2万只.
(1)求年产量y(万只)与改造经费x(万元)之间的函数解析式.(不要求写出x的取值范围)
(2)已知每生产1万只开关所需要的材料费是8万元.除材料费外,今年在生产中,全年还需支付出2万元的固定费用.
①求平均每只开关所需的生产费用为多少元?(用含y的代数式表示)
(生产费用=固定费用+材料费)
②如果将每只开关的销售价定位“平均每只开关的生产费用的1.5倍”与“平均每只开关所占改造费用的一半”之和,那么今年生产的开关正好销完.问今年需投入多少改造经费,才能使今年的销售利润为9.5万元?
(销售利润=销售收入一生产费用-改造费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知有限张卡片,每张卡片上各写有一个小于30的正数,所有卡片上数的和为1080.现将这些卡片按下列要求一批一批地取走(不放回)直至取完.首先从这些卡片中取出第一批卡片,其数字之和为S1,满足S1≤120,且S1要尽可能地大;然后在取出第一批卡片后,对余下的卡片按第一批的取卡要求构成第二批卡片(其数字之和为S2);如此继续构成第三批(其数字之和为S3);第四批(其数字之和为S4);…直到第N批(其数字之和为SN)取完所有卡片为止.
(1)判断S1,S2,…,SN的大小关系,并指出除第N批外,每批至少取走的卡片数为多少?
(2)当n=1,2,3,…,N-2时,求证:Sn
960n

(3)对于任意满足条件的有限张卡片,证明:N≤11.

查看答案和解析>>

科目:初中数学 来源: 题型:

某通讯器材商场,计划用6万元从厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部,
(1)若商场同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;
(2)在(1)的条件下,假如甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机120元/部,求赢利最多的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

小华利用院子里一面足够长的墙作为一边,修建一个形状为直角梯形的花园ABCD(如图所示),已知AD∥BC,∠B=90°,设AB=AD=x米,BC=y米,且x<y.
(1)其余三边用10米长的建筑材料来修建,恰好全部用完.求y与x之间的函数关系式,并直接写出自变量x的取值范围.
(2)现在根椐实际情况,所修建的花园面积必须是8平方米,在满足(1)的条件下,问梯形的两底长各为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

金秋十月,某绿色种植基地种植的农产品喜获丰收,但由于同类农产品的大量上市,本地市场价格第一天为每千克4.8元,第二天降为每千克4.6元,且价格p(元/千克)与天数x(天)(1≤x≤7且x为整数)满足一次函数关系.销售量q(千克)与天数x(天)之间满足q=100x+1500(1≤x<7且x为整数).
(1)求价格p(元/千克)与天数x(天)之间的函数关系式:
(2)第几天的销售收入最大?并求这个最大值.
(3)若该农产品不能在7天内出售,将会因变质而不能出售.依此情况,基地将l0吨该农产品运往外地销售.已知在第五天将农产品运到了外地,并在当天全部销售完.外地销售这种农产品的价格比同一天在本地销售的价格高a%(0<a<20),而在运输过程中有0.6a%损耗,这样,除去各种费用l200元后收入40000元.请你参考以下数据,通过计算估算出a的整数值.
(参考数据:
6
≈2.45,
14
≈3.74,
53
≈7.28,
55
≈7.42

查看答案和解析>>

同步练习册答案