精英家教网 > 初中数学 > 题目详情
(2012•泰安)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为(  )
分析:设BF=x,则CF=3-x,B'F=x,在Rt△B′CF中,利用勾股定理求出x的值,继而判断△DB′G∽△CFB′,根据面积比等于相似比的平方即可得出答案.
解答:解:设BF=x,则CF=3-x,B'F=x,
又点B′为CD的中点,
∴B′C=1,
在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3-x)2
解得:x=
5
3
,即可得CF=3-
5
3
=
4
3

∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,
∴∠DGB′=∠CB′F,
∴Rt△DB′G∽Rt△CFB′,
根据面积比等于相似比的平方可得:
S△FCB′
S△B′DG
=(
FC
B′D
)
2
=(
4
3
1
)
2
=
16
9

故选D.
点评:此题考查了翻折变换的知识,解答本题的关键是求出FC的长度,然后利用面积比等于相似比的平方进行求解,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-
3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则
BC
的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是(  )

查看答案和解析>>

同步练习册答案