精英家教网 > 初中数学 > 题目详情
(2013•三明)如图,△ABC的顶点坐标分别为A(-6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2-10ax+c经过点C,顶点M在直线BC上.
(1)证明四边形ABCD是菱形,并求点D的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.
分析:(1)根据两点之间的距离公式,勾股定理,翻折的性质可得AB=BD=CD=AC,根据菱形的判定和性质可得点D的坐标;
(2)根据对称轴公式可得抛物线的对称轴,设M的坐标为(5,n),直线BC的解析式为y=kx+b,根据待定系数法可求M的坐标,再根据待定系数法求出抛物线的函数表达式;
(3)分点P在CD的上面和点P在CD的下面两种情况,根据等底等高的三角形面积相等可求点P的坐标.
解答:(1)证明:∵A(-6,0),B(4,0),C(0,8),
∴AB=6+4=10,AC=
62+82
=10,
∴AB=AC,
由翻折可得,AB=BD,AC=CD,
∴AB=BD=CD=AC,
∴四边形ABCD是菱形,
∴CD∥AB,
∵C(0,8),
∴点D的坐标是(10,8);

(2)∵y=ax2-10ax+c,
∴对称轴为直线x=-
-10a
2a
=5.
设M的坐标为(5,n),直线BC的解析式为y=kx+b,
0=4k+b
8=b

解得
k=-2
b=8

∴y=-2x+8.
∵点M在直线y=-2x+8上,
∴n=-2×5+8=-2.
又∵抛物线y=ax2-10ax+c经过点C和M,
c=8
25a-50a+c=-2

解得
a=
2
5
c=8

∴抛物线的函数表达式为y=
2
5
x2-4x+8;

(3)存在.
△PBD与△PCD的面积相等,点P的坐标为P1
5
4
29
8
),P2(-5,38).
点评:考查了二次函数综合题,涉及的知识点有:两点之间的距离公式,勾股定理,翻折的性质,菱形的判定和性质,对称轴公式,待定系数法的运用,等底等高的三角形面积相等,分类思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•三明)如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•三明)如图,已知直线y=mx与双曲线y=
k
x
的一个交点坐标为(3,4),则它们的另一个交点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•三明) 如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是
答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等
答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等

查看答案和解析>>

同步练习册答案