精英家教网 > 初中数学 > 题目详情
(2002•南昌)如图是某市一天的温度随时间变化的图象,通过观察可知,下列说法中错误的是( )

A.这天15时的温度最高
B.这天3时的温度最低
C.这天最高温度与最低温度的差是13℃
D.这天21时的温度是30℃
【答案】分析:根据图象的信息,逐一判断.
解答:解:横轴表示时间,纵轴表示温度.
温度最高应找到函数图象的最高点所对应的x值与y值:为15时,38℃,A对;
温度最低应找到函数图象的最低点所对应的x值与y值:为3时,22℃,B对;
这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16℃,C错;
从图象看出,这天21时的温度是30℃,D对.
故选C.
点评:本题考查数形结合,会根据所给条件找到对应的横纵坐标的值.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2002•南昌)如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2002•南昌)如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2002•南昌)如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年江西省中考数学试卷(解析版) 题型:解答题

(2002•南昌)如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.

查看答案和解析>>

科目:初中数学 来源:2002年江西省南昌市中考数学试卷(解析版) 题型:解答题

(2002•南昌)如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.

查看答案和解析>>

同步练习册答案