精英家教网 > 初中数学 > 题目详情

如图,BE、CF是△ABC的角平分线,且∠A=70°,那么∠BDC的度数是


  1. A.
    70°
  2. B.
    115°
  3. C.
    125°
  4. D.
    145°
C
分析:根据三角形的内角和定理和∠A的度数求得另外两个内角的和,利用角平分线的性质得到这两个角和的一半,用三角形内角和减去这两个角的一半即可.
解答:∵∠A=70°,
∴∠ABC+∠ACB=180°-∠A=180°-70°=110°,
∵BE、CF是△ABC的角平分线,
∴∠EBC+∠FCB=(∠ABC+∠ACB)=55°,
∴∠BDC=180°-55°=125°.
故选C.
点评:本题考查了三角形的内角和定理,此定理对学生来说比较熟悉,但有时运用起来却不很熟练,难度较小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,BE、CF是△ABC的角平分线,∠A=50°,则∠BOC的度数是(  )精英家教网
A、50°B、65°C、115°D、110°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,BE,CF是△ABC的角平分线,∠A=65°,那么BDC等于(  )
A、122.5°B、187.5°C、178.5°D、115°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BE、CF是△ABC的高,且BP=AC,CQ=AB.求证:AP⊥AQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BE、CF是△ABC的高,它们相交于点O,点P在BE上,Q在CF的延长线上且BP=AC,CQ=AB,
(1)求证:△ABP≌△QCA.
(2)AP和AQ的位置关系如何,请给予证明.

查看答案和解析>>

同步练习册答案