精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,CE⊥MN,若∠MCE=35°,则∠ANM的度数是________.

55°
分析:过N做NP⊥BC于P,则NP=DC,易证△BEC≌△PMN,即可得∠MCE=∠PNM,根据直角三角形内角和为180°即可求得∠ANM=90°-∠MCE.
解答:解:过N做NP⊥BC于P,则NP=DC,
∵∠MCE+∠NMC=90°,∠MNP+∠NMC=90°,
∴∠MCE=∠MNP,
∴在△MNP和△ECB中,

∴△BEC≌△PMN,
∴∠MCE=∠PNM,
∴∠ANM=90°-∠MCE=55°.
点评:本题考查了正方形各边长、各内角相等的性质,考查了全等三角形的判定和全等三角形对应角相等的性质,本题中证明△BEC≌△PMN是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案