精英家教网 > 初中数学 > 题目详情

如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC的延长线于点F,给出下列5个关系式::①AD∥BC,②,DE=EC③∠1=∠2,④∠3=∠4,⑤AD+BC=AB。将其中三个关系式作为已知,另外两个作为结论,构成正确的命题。请用序号写出两个正确的命题:(1)                  ;(2)                   

 

 

【答案】

(1)如果①②③,那么④⑤;(2)如果①③④,那么②⑤.

【解析】

试题分析:如果①②③,那么④⑤:先证得△AED≌△FEC,得到AD=CF,再利用∠1=∠2,而∠2=∠F,得到AB=BF,则有AD+BC=AB;

如果①③④,那么②⑤:先由AD∥BC,得到∠1=∠F,而∠1=∠2,得到∠2=∠F,于是BA=BF,而∠3=∠4,可得AE=EF,易证△AED≌△FEC,得到AD=CF,DE=EC,易得AD+BC=AB.

试题解析:如果①②③,那么④⑤.理由如下:

∵AD∥BC,

∴∠1=∠F,∠D=∠ECF,

而DE=EC,

∴△AED≌△FEC,

∴AD=CF,

∵∠1=∠2,

∴∠2=∠F,

∴AB=BF,

而BF=BC+CF,

∴AD+BC=AB;

如果①③④,那么②⑤.理由如下:

∵AD∥BC,

∴∠1=∠F,

而∠1=∠2,

∴∠2=∠F,

∴BA=BF,

∵∠3=∠4,

∴BE平分AF,

即AE=EF,

易证△AED≌△FEC,

∴AD=CF,DE=EC,

而BF=BC+CF,

∴AD+BC=AB.

故答案为如果①②③,那么④⑤;如果①③④,那么②⑤.

考点: 命题与定理.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案