精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接E、F、G、H,若使四边形EFGH为菱形,则还需增加的条件是


  1. A.
    AC=BD
  2. B.
    AC⊥BD
  3. C.
    AC⊥BD且AC=BD
  4. D.
    AB=AD
A
分析:可添加的条件是:AC=BD,连接AC、BD,根据三角形的中位线定理得到EF∥AC,EF=AC,HG∥AC,HG=AC,推出EF=HG,EF∥HG即可四边形EFGH是平行四边形,再根据三角形的中位线定理得到EF=AC,GF=BD,AC=BD,推出EF=GF,进而证明四边形EFGH为菱形.
解答:可添加的条件是:AC=BD,
证明:连接AC、BD,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF∥AC,EF=AC,HG∥AC,HG=AC,GF=BD,
∴EF=HG,EF∥HG,
∴四边形EFGH是平行四边形.
∵AC=BD,
∴EF=GF,
∴四边形EFGH为菱形.
故选A.
点评:本题主要考查对三角形的中位线定理,平行四边形的判定,菱形的判定等知识点的理解和掌握,能求出四边形是平行四边形是证此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案