精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.
分析:利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED(AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.
解答:精英家教网证法一:如答图所示,延长AC,到E使CE=CD,连接DE.
∵∠ACB=90°,AC=BC,CE=CD,
∴∠B=∠CAB=
1
2
(180°-∠ACB)=45°,∠E=∠CDE=45°,
∴∠B=∠E.
∵AD平分∠BAC,
∴∠1=∠2
在△ABD和△AED中,
∠B=∠E,∠2=∠1,AD=AD,
∴△ABD≌△AED(AAS).
∴AE=AB.
∵AE=AC+CE=AC+CD,
∴AB=AC+CD.

精英家教网证法二:如答图所示,在AB上
截取AE=AC,连接DE,
∵AD平分∠BAC,
∴∠1=∠2.
在△ACD和△AED中,
AC=AE,∠1=∠2,AD=AD,
∴△ACD≌△AED(SAS).
∴∠AED=∠C=90,CD=ED,
又∵AC=BC,
∴∠B=45°.
∴∠EDB=∠B=45°.
∴DE=BE,
∴CD=BE.
∵AB=AE+BE,
∴AB=AC+CD.
点评:本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,则∠DCB=
55
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂线l分别交AB、AC及BC的延长线于点D、E、F,连接BE. 求证:EF=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C为圆心,R为半径所得的圆与斜边AB只有一个公共点,则R的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足为E,求证:四边形CFED是菱形.

查看答案和解析>>

同步练习册答案