精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.
(1)求证:∠PCA=∠B;
(2)填空:已知∠P=40°,AB=12cm,点Q在 上,从点A开始以πcm/s的速度逆时针运动到点C停止,设运动时间为ts. ①当t=时,以点A、Q、B、C为顶点的四边形面积最大;
②当t=时,四边形AQBC是矩形.

【答案】
(1)证明:如图1中,连接OC.

∵PC是切线,OC是半径,

∴OC⊥PC,

∴∠PCO=90°

∴∠PCA+∠ACO=90°,

∵AB是直径,

∴∠ACB=90°,

∴∠B+∠CAB=90°,

∵OC=OA,

∴∠OAC=∠OCA,

∴∠B+∠OCA=90°,

∴∠PCA=∠B.


(2)3s;
【解析】解:(2)①如图2中,当点Q在AB下方, = 时,四边形AQBC的面积最大,此时t= =3s.
所以答案是3s.
②如图3中,当 = 时,四边形AQBC是矩形,连接CQ与AB交于点O.

∵∠P=40°,∠PCO=90°,
∴∠POC=50°,
∴∠AOQ=130°,
∴弧AQ的长= =
∴t= = s.
所以答案是 s.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.
(1)求证:PA是⊙O的切线;
(2)若AF=3,BC=8,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示则①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中判断正确的有( )个.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,平移抛物线y=x2﹣2x+3,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,求平移后的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴交于点为A(3,0),则由图象可知,方程ax2+bx+c的另一个解是(
A.﹣1
B.﹣2
C.﹣1.5
D.﹣2.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是(
A.
B.
C.
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:

时间x(天)

1≤x<50

50≤x≤90

售价(元/件)

x+40

90

每天销量(件)

200﹣2x

已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案