精英家教网 > 初中数学 > 题目详情

解有关绝对值的问题,常常需要分区域进行讨论,如果数学公式=-2,请你确定x的取值范围.

解:∵=-2,
∴x<0且x+1>0,
∴-1<x<0.
分析:由于=-2,由此可以得到x<0,x+1>0,然后就可以确定x的取值范围.
点评:此题主要考查了绝对值的定义及性质,解题时首先根据等式分别得到不同代数式中x的取值范围,然后结合起来就可以求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并解决有关问题:我们知道:|x|=
-x(当x<0时)
0(当x=0时)
x(当x>0时)
,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x-3|=8时,可令x+1=0和2x-3=0,分别求得x=-1和
3
2
,(称-1和
3
2
分别为|x+1|和|2x-3|的零点值),在实数范围内,零点值x=-1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<-1②-1≤x<
3
2
x≥
3
2
,从而解方程|x+1|+|2x-3|=8可分以下三种情况:
①当x<-1时,原方程可化为-(x+1)-(2x-3)=8,解得x=-2.
②当-1≤x<
3
2
时,原方程可化为(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③当x≥
3
2
时,原方程可化为(x+1)+(2x-3)=8,解得x=
10
3

综上所述,方程|x+1|+|2x-3|=8的解为,x=-2和x=
10
3

通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x-1|的零点值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

科目:初中数学 来源: 题型:

解有关绝对值的问题,常常需要分区域进行讨论,如果
|x|
x
-
x+1
|x+1|
=-2,请你确定x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料并解决有关问题:

我们知道:数学公式,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x-3|=8时,可令x+1=0和2x-3=0,分别求得x=-1和,(称-1和数学公式分别为|x+1|和|2x-3|的零点值),在实数范围内,零点值x=-1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<-1②数学公式数学公式,从而解方程|x+1|+|2x-3|=5可分以下三种情况:
①当x<-1时,原方程可化为-(x+1)-(2x-3)=8,解得x=-2.
②当数学公式时,原方程可化为(x+1)-(2x-3)=8,解得x=-4,但不符合数学公式,故舍去.
③当数学公式时,原方程可化为(x+1)+(2x-3)=8,解得数学公式
综上所述,方程|x+1|+|2x-3|=8的解为,x=-2和数学公式
通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x-1|的零点值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

解有关绝对值的问题,常常需要分区域进行讨论,如果
|x|
x
-
x+1
|x+1|
=-2,请你确定x的取值范围.

查看答案和解析>>

同步练习册答案