抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.
科目:初中数学 来源: 题型:解答题
某跳水运动员进行10m跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为,问:此次跳水会不会失误?通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).
(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数的图象经过点(4,3),(3,0).
(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图像经过怎样的平移得到的图像?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数图象顶点为C(1,0),直线与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.
(1)求此二次函数的解析式;
(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;
(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4),D为OC的中点.
(1)求m的值;
(2)抛物线的对称轴与 x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与△ADE 相似?若存在,请求出点F的坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为?若存在,求出点G的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,抛物线经过点A的坐标为(m,m),点B的坐标为(n,-n),且经过原点O,连接OA、OB、AB,线段AB交y轴于点C.已知实数m,n(m<n)分别是方程x2-2x-3=0的两根.
(1)求m,n的值.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD,BD.当△OPC为等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线的顶点在x轴上,且与y轴交于A点. 直线经过A、B两点,点B的坐标为(3,4).
(1)求抛物线的解析式,并判断点B是否在抛物线上;
(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x.当x为何值时,h取得最大值,求出这时的h值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com