精英家教网 > 初中数学 > 题目详情

(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′处(如图),折痕为EF.小明发现△AEF为等腰三角形,你同意吗?请说明理由.

(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.

 

 

【答案】

(1)同意,理由见解析;(2),y=3x-12.

【解析】

试题分析:(1)同意.

理由:因为AB∥OC,所以∠AEF=∠EFC.根据折叠性质,有∠AFE=∠EFC.所以∠AEF=∠AFE,AE=AF.△AEF为等腰三角形.

(2)过点E作EG⊥OC于点G.设OF=x,则CF=9-x;由折叠可知:AF=9-x.

在Rt△AOF中,AF2=AO2+OF2 即:32+x2=(9-x)2,解得x=4,AE=AF=9-x=5,FG=OG-OF=5-4=1.在Rt△EFG中,EF2=EG2+FG2=10,求出EF=

设直线EF的解析式为y=kx+b(k≠0),因为点E(5,3)和点F(4,0)在直线EF上,所以,代入解得解得k,b,进而求出解析式.

试题解析:(1)同意.

理由:∵AB∥OC,∴∠AEF=∠EFC.

根据折叠性质,有∠AFE=∠EFC.

∴∠AEF=∠AFE,

∴AE=AF.

∴△AEF为等腰三角形.

(2)过点E作EG⊥OC于点G.

设OF=x,则CF=9-x;

由折叠可知:AF=9-x.

在Rt△AOF中,AF2=AO2+OF2

∴32+x2=(9-x)2

∴x=4,9-x=5.

∴AE=AF=5,

∴FG=OG-OF=5-4=1.

在Rt△EFG中,

EF2=EG2+FG2=10,

∴EF=

设直线EF的解析式为y=kx+b(k≠0),

∵点E(5,3)和点F(4,0)在直线EF上,

∴3=5k+b,0=4k+b,

解得:k=3,b=-12.

∴y=3x-12.

考点:1.折叠问题.2.一次函数的解析式.3.勾股定理.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′处(如图),折痕为EF.小明发现△AEF为等腰三角形,你同意吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′处(如图),折痕为EF、小明发现△AEF为等腰三角形,你同意吗?请说明理由.
精英家教网
(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分) 1.(1)观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′ 处(如图1),折痕为EF.小明发现△AEF为等腰三角形,你同意吗?请说明理由.(3分)

 

 

2.(2)实践与应用:以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出折痕EF的长及EF所在直线的函数关系式.(4+3分)

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察与发现:将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′ 处 (如图1),折痕为EF.小明发现△ AEF为等腰三角形,你同意吗?请说明理由.

查看答案和解析>>

同步练习册答案