精英家教网 > 初中数学 > 题目详情
如图,菱形ABCD中,∠ABC=120°,菱形的边长为6,点E、F分别是边AD,CD上的两个动点(E、F与D不重合).精英家教网
(1)若E、F满足AE=DF.
①求证:△BEF是等边三角形;
②设△BEF面积为S,直接写出S的最大值和最小值.
(2)若E、F满足∠BEF=60°,则△BEF是否仍一定为等边三角形?若是,请给出证明;若不是,请说明理由.
分析:(1)①先证明三角形BEF是等腰三角形,再求出一个内角的度数是60°.
②当点E、F分别与点D、C重合时,等边三角形的边最长面积最大,当EF⊥BD时且E.F分别两边的中点时边最小面积也最小.
(2)先判定再证明,只要求出另一个内角的度数就能判定三角形的形状,利用两个等角加相邻的角相等从而求出另一个内角的度数.
解答:解:(1)①证明:
∵四边形ABCD是菱形,∠ABC=120°
∴∠ADB=∠CDB=∠ABD=∠CBD=60° AD=CD
∴△ABC与△BCD是正三角形
∴BD=BC
∵AE=DF
∴DE=CF
在△BDE与△BFC中
PE=CF
∠ADB=∠C
BD=BC

∴△BDE≌△BFC
∴BE=BF,∠EBD=∠CBF
∴∠EBD+∠DBF=∠CBF+∠DBF=60°
∴∠EBF=60°
∴△BEF为等边三角形;
②由①知△BEF为等边三角形,其边长最大值为6,最小值为3
3

所以S的最大值是9
3
,最小值为
27
4
3


(2)△BEF是等边三角形过E作EG∥DB交AB与点G精英家教网
可得△AEG是等边三角形
∴AE=AG,∠EGB=120°,∠AEG=60°
∴GB=ED∠EGB=∠EDF
∵∠BEF=60°
∴∠GEB+∠DEF=60°
∵∠DFE+∠DEF=60°
∴∠GEB=∠DEF
∴△EGB≌△FDE
∴BE=EF
∴△BEF是等边三角形.
点评:证明这个题一定要牢记等边三角形的判定条件和等边三角形的性质.依据题意判断使用哪种判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案