精英家教网 > 初中数学 > 题目详情

把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为  


5   解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,

在矩形ABCD中,AD∥BC,而IG⊥BC,

∴IG⊥AD,

∴在⊙O中,FH=EF=4,

设求半径为r,则OH=8﹣r,

在Rt△OFH中,r2﹣(8﹣r)2=42

解得r=5,

故答案为:5.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.

(1)请画出树状图并写出(m,n)所有可能的结果;

(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:


甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是(  )

   A.             ①②③              B. 仅有①②        C. 仅有①③ D. 仅有②③

查看答案和解析>>

科目:初中数学 来源: 题型:


如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;

(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为(  )

   A.             π                B. π             C.     D.

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:﹣4sin45°﹣+

查看答案和解析>>

科目:初中数学 来源: 题型:


(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.

(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在         区域的可能性最大(填A或B或C).

查看答案和解析>>

科目:初中数学 来源: 题型:


一个几何体的展开图如图所示,这个几何本是(   )

A.三棱柱    B.三棱锥    C.四棱柱    D.四棱锥

查看答案和解析>>

同步练习册答案