精英家教网 > 初中数学 > 题目详情
如图,已知二次函数 =,当<<时, 的增大而增大,则实数a的取值范围是  (  )
A.>B.<C.>0D.<<
B

试题分析:由得对称轴为x=1,
∵a=-1<0
∴当x<1时,y随x的增大而增大,
∵当-1<x<a时, y随x的增大而增大
∴a≤1,
因此选B
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象过A(2,0),B(0,-1)和C(4,5)三点。
(1)求二次函数的解析式;
(2)设二次函数的图象与轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线,并写出当在什么范围内时,一次函数的值大于二次函数的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,2),点M(m,n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上,过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F.
(1)求抛物线的解析式,并写出其顶点坐标;
(2)当S△MFQ:S△MEB=1:3时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.
(1)求该抛物线的解析式及点M的坐标;
(2)连接ON,AC,证明:∠NOB=∠ACB;
(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;
(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=
1
3
(x+2)2-6
的开口方向______,顶点坐标______,对称轴是______,当x<-2时,y随x的增大而减小;当x=______时,y有最______值,这个值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果抛物线y=x2+6x+c的顶点在x轴上,那么c的值为(  )
A.0B.6C.3D.9

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数y=2x2﹣1的图象沿y轴向上平移2个单位,所得图象对应的函数表达式为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

苏科版教材中有这样一句话:“一般地,如果二次函数的图象与x轴有两个公共点,那么一元二次方程有两个不相等的实数根.”据此判断方程x2-2x=-2实数根的情况是  (    )
A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根

查看答案和解析>>

同步练习册答案