精英家教网 > 初中数学 > 题目详情
8.如图,△ABC中,AB=AC,∠BAC=90°,BC=4,线段MN在BC边上沿BC方向运动(运动开始时,点M与点B重合,点N到达点C时运动终止),MN=1,分别过点M、N分别作BC的垂线,与折线B→A→C交于P、Q两点,设线段BM的长为x.
(1)线段MN在运动的过程中,当PM=QN时,求x值;
(2)线段MN在运动的过程中,PM+QN=y,请用含x的式子表示y,并写出x的取值范围.

分析 (1)先利用等腰直角三角形得出PM=BM,QN=CN,再利用线段的和差和PM=QN即可得出x;
(2)分三种情况讨论计算,①点P,Q都在AB上,②点P在AB上,点Q在AC上,③点P,Q都在AC上,利用等腰直角三角形的性质和线段的和差即可得出结论.

解答 解:(1)如图1,在△ABC中,AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵PM⊥BC,QN⊥BC,
∴∠PMB=∠QNC=90°,
在Rt△PMB中,PM=BM,
同理:QN=CN,
∵PM=QN,
∴BM=CN,
∵BC=4,MN=1,
∴BC=BM+MN+CN=2BM+MN=4,
∴BM=$\frac{1}{2}$(4-MN)=$\frac{3}{2}$,
∴x=$\frac{3}{2}$;


(2)①、如图2,在等腰直角三角形ABC中,BC=4,
∴BH=CH=$\frac{1}{2}$BC=2,
∵MN=1,
∴BM<1
当0≤x≤1时,
在Rt△OMB中,∠ABC=45°,
∴PM=BM=x,
在Rt△QNB中,QN=BN=BM+MN=x+1,
∴y=PM+QN=x+x+1=2x+1,

②、如图3,当1<x<2时,同①得,PM=BM=x,
在Rt△QNC中,QN=CN,
∵BC=BM+MN+CN,
∴QN=CN=BC-BM-MN=4-x-1=3-x,
∴y=PM+QN=x+3-x=3;


③、如图4,当2≤x≤3时,
∵BC=4,BM=x,
∴CM=BC-BM=4-x,
∵MN=1,
∴CN=CM-MN=4-x-1=3-x,
在Rt△PMC中,PM=CM=4-x,
同理:QN=CN=3-x,
∴y=PM+QN=4-x+3-x=7-2x;
即:y=$\left\{\begin{array}{l}{2x+1(0≤x≤1)}\\{3(1<x<2)}\\{7-2x(2≤x≤3)}\end{array}\right.$.

点评 此题是三角形综合题,主要考查了等腰直角三角形的性质,线段的和差,解本题的关键是用x表示出PM,QN;是一道比较简单的综合题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.(1)如图1.
①若已知∠AOB=90°,∠DOB=30°,射线OC平分∠DOB,射线OE平分∠AOD.求∠EOC的度数;
②若已知∠AOB=β,∠DOB=α,射线OC平分∠DOB,射线OE平分∠AOD,求∠EOC的度数;
(2)如图2,已知∠AOD=120°,射线OP以每秒15°的速度,从射线OD开始逆时针向射线OA旋转,到达射线OA之后又以同样的角速度顺时针返回,直到到达射线OD停止,射线OQ从射线OA开始,以每秒5°的速度顺时针向射线OD旋转,直到到达各自的目的地才停止,请问当过了几秒时,∠POQ=$\frac{1}{2}$∠AOQ?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)反之,在图①中,若∠B+∠D=∠E,直线AB与CD有什么位置关系?
(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?
(4)在图③中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.一块长比宽多8m的矩形场地,在四周开一条4m宽的路,使路的面积占原来场地面积的$\frac{2}{5}$,求矩形场地的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.用适当的方法解下列方程:
(1)(x-2)(x-3)=12;          
(2)3x2-6x+4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在Rt△ABC中,∠BAC=90°,E、F分别是BC、AC的中点,延长BA到点D,使AB=2AD,连接DE、DF、AE、EF,AF与DE交于点O.
(1)试说明AF与DE互相平分;
(2)若AB=8,BC=12,求DO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.把两个大小不同的含45°角的直角三角板如图①放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连结CD.求证:DC⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,BD是△ABC的角平分线,点E,F分别在边BC,AB上,且DE∥AB,BE=AF.
(1)求证:EF∥AC;
(2)若∠ABC=56°,∠ADB=120°,求∠AFE的度数.

查看答案和解析>>

同步练习册答案