精英家教网 > 初中数学 > 题目详情

如图,D是半径为R的⊙O上一点,过点D作⊙O的切线交直径AB的延长线于点C,下列四个条件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=R.其中,使得BC=R的有(填正确结论的序号)________.

①②③
分析:作出常用辅助线,过圆心连接切点,利用切线的性质定理,可以求出各边以及各角之间的关系.
解答:解:连接OD,
∵CD是圆的切线
∴OD⊥CD
当AD=CD,∴∠A=∠C
∵AO=OD,∠A=∠ADO,∴∠A=∠C=∠ADO,
又∵∠DOC=∠A+∠ADO
∵∠DOC+∠C=90°
∴∠A=∠C=∠ADO=30°
根据在直角三角形中,30°所对的边是斜边的一半,OD=OC=R
∵OB=R,所以BC=R
即:①AD=CD符合要求,
当∠A=30°,∵AO=OD
∴∠ADO=30°,
∴∠DOC=60°,
∵OD⊥CD,
∴∠C=30°
根据在直角三角形中,30°所对的边是斜边的一半,OD=OC=R
∵OB=R,所以BC=R
即:②∠A=30°正确
当∠ADC=120°,OD⊥CD
∴∠ADO=30°,∠A=30°
∴∠DOC=60°
∴∠C=30°
根据在直角三角形中,30°所对的边是斜边的一半,OD=OC=R
∵OB=R,所以BC=R
即:③∠ADC=120°正确,
当DC=R,∵OD=R,OD⊥CD,
∴OC=R,∵OB=R,∴BC=R-R
所以④DC=R,不能使得BC=R
故填:①②③
点评:此题主要考查了切线的性质定理,是中考中常见问题,但是它具有一定的开放性,题目不错.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,连接AC,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BC是半径为1的⊙O的弦,A为弧BC上一点,M、N分别为BD、AD的中点,则sin∠C的值等于(  )精英家教网
A、ADB、BCC、MND、AC

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,
AB
是半径为1的半圆弧,△AOC为等边三角形,D是
BC
上的一动点,则△COD的面积S的最大值是(  )
A、s=
3
4
B、s=
3
3
C、s=
3
2
D、s=
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+PB的最小值为(  )
A、2
2
B、
2
C、1
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P是半径为4的⊙O外一点,PA切⊙O于A,PB切⊙O于B,∠APB=60°.
求:夹在劣弧AB及,PB之间的阴影部分的面积.

查看答案和解析>>

同步练习册答案