精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,∠BAD=90°,AB=BC=2数学公式,AC=6,AD=3,则CD的长为


  1. A.
    4
  2. B.
    4数学公式
  3. C.
    3数学公式
  4. D.
    3数学公式
D
分析:作辅助线构建直角三角形,可得∠DAE=60°,再根据三角函数求出AF,DF的长,从而得到CF的长.根据勾股定理即可求出CD的长.
解答:解:过B点作BE⊥AC于E,过D点作DF⊥AC于F,
∵AB=BC=2,AC=6,
∴cos∠BAE=,即∠BAE=30°.
∵∠BAD=90°,
∴∠DAE=60°.
∵AD=3,
∴AF=1.5,DF=1.5
∴CF=6-1.5=4.5.
∴CD==3
故选D.
点评:本题考查了解直角三角形、三角函数、勾股定理等知识.难度较大,有利于培养同学们钻研和探索问题的精神.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案