精英家教网 > 初中数学 > 题目详情

在矩形ABCD中,两条对角线AC、BD相交于O,∠ACB=60°,AD=4
(1)判断△AOD的形状;
(2)求对角线BD的长及AB的长.

(1)解:△AOD是等边三角形,
理由是:∵四边形ABCD是矩形,
∴∠ABC=∠BAD=90°,AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OD=OB=OC,
∵∠ACB=60°,
∴∠CAB=30°,
∴∠DAO=60°,
∵OA=OD,
∴△AOD是等边三角形;

(2)解:∵△AOD是等边三角形,
∴∠ADO=60°,AD=OA=OD=4,
由(1)知,OB=OD=BD,
即BD=2OD=8,
在Rt△DAB中,由勾股定理得:AB===4
即BD=8,AB=4
分析:(1)根据矩形的性质得出∠ABC=∠BAD=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OD=OB=OC,求出∠CAB=30°,∠DAO=60°,根据等边三角形的判定推出即可;
(2)根据等边三角形的性质得出OD=AD=4,求出BD=2OD=8,根据勾股定理求出AB即可.
点评:本题考查了等边三角形的性质和判定,矩形的性质,勾股定理等知识点,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在矩形ABCD中,两条对角线AC、BD相交于点O,AB=4cm,AD=4
3
cm.
(1)判定△AOB的形状;
(2)计算△BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,两条对角线AC、BD相交于点O,且AB=OA=4cm,则AD=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,两条对角线相交于点O,且AO=AD=
3
,则AB的长是(  )
A、
3
2
B、3
C、2
3
D、
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,两条对角线AC、BD相交于点O,∠AOB=60°,若AB=4,则AC=
8
8

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,两条对角线AC、BD相交于O,∠ACB=60°,AD=4
(1)判断△AOD的形状;
(2)求对角线BD的长及AB的长.

查看答案和解析>>

同步练习册答案