精英家教网 > 初中数学 > 题目详情

若△ABC是边长为6的等边三角形,点F是△ABC的重心,连接AF延长至点E,交BC于D,CF∥BE,则四边形BECF的周长为________.

8
分析:根据等边三角形的性质可知外心,重心,垂心三心合一;且内角均为60°;根据勾股定理可求出AD的长,利用重心的性质可求出DF的长,再证明四边形BECF是菱形即可求出其周长.
解答:∵△ABC是边长为6的等边三角形,点F是△ABC的重心,
∴AB=BC=6,AD⊥BC,
∴BD=CD=BC=3,
∴AD==3
∴FD=AD=
∵AD⊥BC,BD=CD,
∴BF=CF,BE=CE,
∴∠BEF=∠CEF,
∵CF∥BE,
∴∠CFE=∠BEF,
∴∠CEF=∠CFE,
∴CF=CE,
∴BE=CE=CF=BF,
∴四边形BECF是菱形,
∵BD=3,DF=
∴BF==2
∴四边形BECF的周长是4×2=8
故答案为:8
点评:本题考查了等边三角形的性质、重心的性质、勾股定理的运用以及菱形的判定和性质,题目的综合性很强,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

由于水资源缺乏,B,C两地不得不从A地引水,这就需要在A,B,C三地之间铺设地下输水管道.现有三种设计方案:如图,图中实线表示管道铺设线路,在图(2)中,AD⊥BC于点D:在图(3)中,OA=OB=OC.若△ABC是边长为a的等边三角形,为使铺设线路最短,哪种方案最好?(
2
≈1.141,
3
≈1.732)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,
(1)用直尺和圆规作边BC的高线AD交BC于点D(保留作图痕迹,不要求写作法);
(2)若△ABC的边长为2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

若△ABC是边长为6的等边三角形,点F是△ABC的重心,连接AF延长至点E,交BC于D,CF∥BE,则四边形BECF的周长为
8
3
8
3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

由于水资源缺乏,B,C两地不得不从A地引水,这就需要在A,B,C三地之间铺设地下输水管道.现有三种设计方案:如图,图中实线表示管道铺设线路,在图(2)中,AD⊥BC于点D:在图(3)中,OA=OB=OC.若△ABC是边长为a的等边三角形,为使铺设线路最短,哪种方案最好?(数学公式≈1.141,数学公式≈1.732)

查看答案和解析>>

同步练习册答案