精英家教网 > 初中数学 > 题目详情
5.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.
(1)求证:四边形ADBE是矩形;
(2)连接DE,交AB于点O,若BC=8,AO=$\frac{5}{2}$,求cos∠AED的值.

分析 (1)只要证明四边形ADBE是平行四边形,且∠ADB=90°即可;
(2)求出BD、AB,在Rt△ADE中,根据cos∠AED=$\frac{AE}{DE}$计算即可;

解答 证明:(1)∵AE∥BC,BE∥AD,
∴四边形ADBE是平行四边形.
∵AB=AC,AD是BC边的中线,
∴AD⊥BC.
即∠ADB=90°.
∴四边形ADCE为矩形.
(2)∵在矩形ADCE中,AO=$\frac{5}{2}$,
∴DE=AB=5.
∵D是BC的中点,
∴AE=DB=4
∴在Rt△ADE中,cos∠AED=$\frac{AE}{DE}$=$\frac{4}{5}$.

点评 本题考查矩形的判定和性质、等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握矩形的判定方法,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为(  )
A.65°B.60°C.55°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<-1或x>4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某机械厂每月固定生产甲、乙两种零件共80万件,并能全部售出.甲零件每件成本10元,售价16元;乙零件每件成本8元,售价12元.设生产甲零件x万件.所获总利润y万元.
(1)写出y与x的函数关系式;
(2)如果每月投入的总成本不超过740万元,应该怎样安排甲、乙零件的产量,可使所获的总利润最大?最大总利润是多少万元?
(3)该厂在销售中发现:某月甲零件售价每提高1元,甲零件销量会减少5万件,乙零件售价不变,不管生产多少都能卖出,在(2)获得最大利润的情况下,为了获得更大的利润,该厂决定提高甲零件的售价,并重新调整甲、乙零件的生产数量,求甲零件售价提高多少元时,可获总利润最大?最大总利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABCD、线段CD分别表示该产品每千克生产成本y1(单位:元)销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.
(1)求线段AB所表示的y1与x之间的函数表达式.
(2)当该产品产量为多少时,获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.不等式组$\left\{\begin{array}{l}{1-2x<0}\\{4+x<2x}\end{array}\right.$的解集为x>4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.
(1)M、N两地之间的距离为80km;
(2)求线段BC所表示的y与t之间的函数表达式;
(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并直接写出当x取何值时,商场获利润不少于2160元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知一组数据1,10,12,5,x,9的平均数是7,那么这组数据的中位数为7.

查看答案和解析>>

同步练习册答案