精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,AE是∠BAC外角∠CAD的平分线,交BC延长线于点E,延长EA交⊙O于点F,连接BF,求证:FB2=FA•FE.

证明:∵AE是∠BAC外角∠CAD的平分线,
∴∠DAE=∠CAE,又∠DAE=∠FAB,∠FBE=∠CAE,
∴∠FBE=∠FAB
又∵∠BFE=∠AFB
∴△FAB∽△FBE
∴FB:FA=FE:FB即FB2=FA•FE.
分析:要证FB2=FA•FE,需证FB:FA=FE:FB,需证△FAB和△FBE相似.有一公共角∠F,再证明∠FBE=∠FAB即可证明两三角形相似.
点评:本题主要考查了相似三角形的判定及性质.注意:在圆中证明两三角形相似时,通常找角相等的条件,比找边对应成比例容易得多.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案