精英家教网 > 初中数学 > 题目详情
阅读下列材料,并解答问题:
函数y=ax2+bx+c(a≠0)叫做二次函数,它的图象是抛物线,二次函数可以化成y=a(x-h)2+k的形式,则点(h,k)为抛物线的顶点坐标.
例:y=2x2+4x-1=2(x+1)2-3,则顶点坐标为(-1,-3).
运用上述方法,求抛物线y=-2x2-3x+4的顶点坐标.
分析:配方把抛物线y=-2x2-3x+4转化为顶点式形式,然后即可得到顶点坐标.
解答:解:∵y=-2x2-3x+4
=-2(x2+
3
2
x+
9
16
)+
41
8

=-2(x+
3
4
2+
41
8

∴顶点坐标为(-
3
4
41
8
).
点评:本题考查了二次函数的三种形式,把抛物线解析式转化为顶点式形式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读下列材料,并解答后面的问题:
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
),…,
1
17×19
=(-
1
19

1
1×3
+
1
3×5
+
…+
1
17×19

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+…+
1
2
(
1
17
-
1
19

=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
17
-
1
19
)

=
1
2
(1-
1
19
)
=
9
19

(1)在式子
1
1×3
+
1
3×5
+…
中,第五项为
 
,第n项为
 

(2)计算:
1
x(x+1)
+
1
(x+1)(x+2)
+…+
1
(x+99)(x+100)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

20、阅读下列材料,并解答相应问题:
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax-3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有:
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+2a+a)(x+a-2a)
=(x+3a)(x-a).
(1)像上面这样把二次三项式分解因式的数学方法是.
配方法

(2)这种方法的关键是.
配成完全平方式

(3)用上述方法把m2-6m+8分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,并解答问题:
在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0时,那
么它的两个根是x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
所以x1+x2=
(-b+
b2-4ac
)+(-b-
b2-4ac
)
2a
=
-2b
2a
=-
b
a
x1x2=
(-b+
b2-4ac
)•(-b-
b2-4ac
)
2a•2a
=
b2-(b2-4ac)
4a2
=
c
a

由此可见,一元二次方程的两根的和、两根的积是由一元二次方程的系数a、b、c确定的.运用上述关系解答下列问题:
(1)已知一元二次方程2x2-6x-1=0的两个根分别为x1、x2,则x1+x2=
3
3
,x1x2=
-
1
2
-
1
2
1
x1
+
1
x2
=
-6
-6

(2)已知x1、x2是关于x的方程x2-x+a=0的两个实数根,且
x
2
1
+
x
2
2
=7
,求a的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省无锡市蠡园中学九年级(上)期中复习数学试卷(四)(解析版) 题型:解答题

阅读下列材料,并解答问题:
函数y=ax2+bx+c(a≠0)叫做二次函数,它的图象是抛物线,二次函数可以化成y=a(x-h)2+k的形式,则点(h,k)为抛物线的顶点坐标.
例:y=2x2+4x-1=2(x+1)2-3,则顶点坐标为(-1,-3).
运用上述方法,求抛物线y=-2x2-3x+4的顶点坐标.

查看答案和解析>>

同步练习册答案