精英家教网 > 初中数学 > 题目详情
2.解方程:
(1)x2+2x-3=0
(2)x2-2x=2x+1.

分析 (1)利用十字相乘法分解因式即可;
(2)首先把方程移项变形为x2-4x=1的形式,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.

解答 解:(1)∵x2+2x-3=0,
∴(x+3)(x-1)=0,
∴x+3=0或x-1=0,
∴x1=-3,x2=1;
(2)∵x2-2x=2x+1,
∴x2-4x=1,
∴x2-4x+4=1+4,
∴(x-2)2=5,
∴x-2=±$\sqrt{5}$,
∴x1=2+$\sqrt{5}$,x2=2-$\sqrt{5}$.

点评 此题主要考查了一元二次方程的解法,关键是掌握降次的方法,把二次化为一次,再解一元一次方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.(1)计算:(-7x2y)(2x2y-3xy3+xy)
(2)因式分解:a2(a-b)+b2(b-a)
(3)解方程:$\frac{x-2}{x+2}$-$\frac{12}{{x}^{2}-4}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解不等式组$\left\{\begin{array}{l}{2a-4<0}\\{4a-2<5a+1}\end{array}\right.$,并从其解集中选取一个能使分式$\frac{3a+3}{{a}^{2}-1}$÷$\frac{6a}{a-1}$-$\frac{1}{a}$有意义的整数,代入这个式子求值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程,已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有一个解为-1,则下列结论正确的是(  )
A.a=c,b=1B.a=b,c=0C.a=-c,b=0D.a=b=c

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\frac{3{x}^{2}{y}^{4}}{8{z}^{3}}$•$\frac{10{z}^{2}}{-6{x}^{2}{y}^{2}}$;(2)$\frac{4{x}^{2}-{y}^{2}}{3{x}^{2}y}$÷$\frac{2x-y}{xy}$;
(3)$\frac{a+b}{{a}^{2}-{b}^{2}}$•$\frac{{a}^{2}-2ab+{b}^{2}}{ab}$;(4)$\frac{{x}^{2}-4{y}^{2}}{{x}^{2}+6xy+9{y}^{2}}$÷$\frac{2{y}^{2}-xy}{{x}^{2}+3xy}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:①2x2+1=3x        ②(x-3)2+2x(x-3)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:(x-1)2=-2x(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.(Ⅰ)已知两个正数x、y满足x+y=7,则$\sqrt{{x}^{2}+4}$+$\sqrt{{y}^{2}+9}$的最小值为$\sqrt{74}$.此时x的值为$\frac{14}{5}$.(提示:若借助网格或坐标系,就可以从数形结合的角度来看$\sqrt{{x}^{2}+4}$,例如可以把$\sqrt{{3}^{2}+{4}^{2}}$看做边长为3和4的直角三角形的斜边).
(Ⅱ)如图,在每个边长为1的正方形网格中,点A、B均在格点上,且AB=7,请你在线段AB上找到一点P,使AP的长为(Ⅰ)中所求的x.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若(x2+1)2-(3x2+3)=4,则-x2-1的值是-4.

查看答案和解析>>

同步练习册答案