精英家教网 > 初中数学 > 题目详情
如图1,在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于点F,以CF为邻边作平行四边形ECFM.
(1)求证:四边形ECFM为菱形;
(2)如图2,当∠ABC=90°时,点G为EF中点,求∠BDG的度数;
(3)如图3,当∠ABC=120°时,求∠BDM的度数.
分析:(1)由四边形ABCD是平行四边形就可以得出AB∥CD,AD∥BC,再根据角平分线的性质就可以得出∠BAE=∠BEA,得出EC=CF就可以得出结论;
(2)如图2,连接BG,CG,由(1)的结论就可以得出四边形EMFC是正方形,就可以得出△BCG≌△DFG,就可以得出GB=GD,∠BGC=∠DGF,就可以得出∠BGD=∠CGF,从而得出△BGD为等腰直角三角形,就可以得出结论;
(3)如图3,连接MC,MB,根据条件可以得出△CMF和△ECM是等边三角形,由其性质就可以得出△BCM≌△DFM,由全等三角形的性质就可以得出结论.
解答:解:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠BAE=∠EFC,∠DAE=∠CEF.
∵AE平分∠DAB,
∴∠BAE=∠DAE,
∴∠EFC=∠CEF,
∴CE=CF.
∵四边形ECFM是平行四边形,
∴平行四边形ECFM是菱形;

(2)如图2,连接BG,CG.
当∠ABC=90°时,平行四边形ABCD为矩形,四边形ECFM就为正方形.
∴CE=CF.
∴∠CGF=90°.
∵点G为EF中点,
∴GE=GF=GC.∠GCB=∠GFD=45°.
∵AE平分∠BAD,
∴AB=BE=CD.
∴BC=DF.
在△BCG和△DFG中
BC=DF
∠GCB=∠GFD
GC=GF

∴△BCG≌△DFG(SAS),
∴GB=GD,∠BGC=∠DGF,
∴∠BGC-∠DCG=∠DGF-∠DCG,
即∠BGD=∠CGF=90°,
∴△BGD为等腰直角三角形.
∴∠BGD=45°.
答:∠BGD=45°.

(3)连接MC,MB,当∠ABC=120°时,
∵四边形ABCD是平行四边形,
∴∠BAD=60°.
∵AE平分∠BAD,
∴∠BAF=∠CFE=30°.
∵四边形ECFM是菱形,
∴∠MFC=60°,
∴△CMF和△ECM是等边三角形.
∴MC=MF,∠BCM=∠DFM=60°.
∵AB=BE=CD,
∴BC=DF.
在△BCM和△DFM中
MC=MF
∠BCM=∠DFM
BC=DF

∴△BCM≌△DFM(SAS),
∴BM=DM,∠BMC=∠DMF,
∴∠BMC-∠DMC=∠DMF-∠DMC,
即∠DMB=∠CMF=60°,
∴△BDM是等边三角形,
∴∠BDM=60°.
答:∠BDM=60°.
点评:本题考查了平行四边形的性质的运用,菱形的判定及性质的运用,正方形的性质的运用,等腰直角三角形的判定及性质的运用,等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键,作辅助线是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图,EF在平行四边形ABCD的边AB的延长线上,且EF=AB,DE交CB于点M.
求证:△BME∽△BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,F在平行四边形ABCD的边DC的延长线上,连接AF交BC于E,且CE:BE=1:3,若△EFC的面积等于a,求平行四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若
AF
EF
=3,求
CD
CG
的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是
AB=3EH
AB=3EH
,CG和EH的数量关系是
CG=2EH
CG=2EH
CD
CG
的值是
3
2
3
2

(2)类比延伸
如图2,在原题的条件下,若
AF
EF
=m(m>0),则
CD
CG
的值是
m
2
m
2
(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若
AB
CD
=a,
BC
BE
=b,(a>0,b>0)
,则
AF
EF
的值是
ab
ab
(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•阜宁县一模)在数学学习和研究中经常需要总结运用数学思想方法.如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整.
题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若
AF
EF
=3
,求
CD
CG
的值.

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则易求
AB
EH
的值是
3
3
CG
EH
的值是
2
2
,从而确定
CD
CG
的值是
3
2
3
2

(2)类比延伸
如图2,在原题的条件下,若
AF
EF
=m
(m>0),则
CD
CG
的值是
m
2
m
2
.(用含m的代数式表示),写出解答过程.
(3)拓展迁移
如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若
AB
CD
=a
BC
BE
=b
(a>0,b>0),则
AF
EF
的值是
ab
ab
.(用含a、b的代数式表示)写出解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,在平行四边形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.
求证:①△ABF≌△DCE;②四边形ABCD是矩形.
(2)如图2,已知△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.
①请用尺规作图的方法,过点D作DM⊥BE,垂足为M;(不写作法,保留作图痕迹)
②求证:BM=EM.

查看答案和解析>>

同步练习册答案