
解:不全面,应该有四种情况.
①如图①所示,
过C作CD⊥BC于D,
在Rt△ACD中,CD=

AC=

,
∴S
△ABC=

AB•CD=

×6cm×

cm=

cm
2;
②如图②所示:过点B作BD⊥AC于点D.
在Rt△ABD中,BD=

AB=

cm,AD=


cm;
在Rt△BDC中,CD=

cm(勾股定理),
∴S
△ABC=

AC•BD=

×(


+

)×

cm=

cm
2;
③如图③所示,过点B作BD⊥AC于点D.
在Rt△ABD中,BD=

AB=3cm,AD=3

cm;
在Rt△BDC中,CD=4cm(勾股定理),
∴S
△ABC=

AC•BD=

×(3

+4)×3cm=

cm
2;
④如图④所示:设CD=xcm,则
在Rt△ACD中,AD=

xcm;
在Rt△BCD中,BD=

cm,
∴AD+BD=

x+

=6,
解得,x=

,或x=

,
∴S
△ABC=

AB•CD=

×(

)×6cm=

cm
2;
或S
△ABC=

AB•CD=

×(

)×6cm=

cm
2;
综上所述,该三角形的面积是:

cm
2;

cm
2;

cm
2;

cm
2.
分析:分类讨论:①30°角的两邻边是6cm和5cm;②30°角的对边和邻边分别是6cm和5cm;③30°角的对边和邻边分别是5cm和6cm;④30°角的两邻边是5cm和6cm.
点评:本题考查了三角形的面积,三角形中的勾股定理的运用以及含30度角的直角三角形.解答该题需要分类讨论.