分析 (1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD可得答案;
(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.
解答 解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,
∴∠E=∠CFD=90°,
∵AD是中线,
∵BD=CD,
在△BED和△CFD中,
∵$\left\{\begin{array}{l}{∠BDE=∠CDF}\\{∠E=∠CFD}\\{BD=CD}\end{array}\right.$,
∴△BED≌△CFD(AAS),
∴BE=CF;
(2)∵AB为⊙O的直径
∴∠ACB=90°
∴∠B+∠BAC=90°
又∵∠BAC=2∠B
∴∠B=30°,∠BAC=60°
∵OA=OC
∴△OAC是等边三角形.
∴OA=AC=6,∠AOC=60°
∵AP是⊙O的切线.
∴∠OAP=90°
∴在直角△OAP中,∠P=90°-∠AOC=90°-60°=30°
∴OP=2OA=2×6=12,
∴PA=$\sqrt{O{P}^{2}-O{A}^{2}}$=$\sqrt{1{2}^{2}-{6}^{2}}$=6$\sqrt{3}$.
点评 本题主要考查了全等三角形的判定与性质及切线的性质定理,勾股定理以及直角三角形中,30度的锐角所对的直角边等于斜边的一半,正确证明△AOC是等边三角形是解决本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | yx | B. | xy | C. | 10y+x | D. | 10x+y |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com