二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则正确的结论是( )
A.abc>0 | B.3a +c<0 | C.4a+2b+c<0 | D.b2 -4ac<0 |
B.
解析试题分析:根据二次函数的图象开口向下推出a<0,根据二次函数的图形与y轴的交点在y轴的正半轴上推出c>0,根据二次函数的图象的对称轴是直线x=1得出 =1,求出b=-2a>0,把x=-1代入y=ax2+bx+c(a≠0)得出y=a-b+c<0,根据二次函数的图象与x轴有两个交点推出b2-4ac>0,根据以上结论推出即可.A、∵二次函数的图象开口向下,
∴a<0,
∵二次函数的图形与y轴的交点在Y轴的正半轴上,
∴c>0,
∵二次函数的图象的对称轴是直线x=1,
∴ =1,
b=-2a>0,
∴abc<0,故本选项错误;
B、把x=-1代入y=ax2+bx+c(a≠0)得:y=a-b+c<0,
∴a+c<b,即a+c<-2a,∴3a+c<0,故本选项正确;
C、∵二次函数的图象的对称轴是直线x=1,
∴=1,b=-2a.
∴4a+2b+c=4a+2(-2a)+c=c>0,故本选项错误;
D、∵二次函数的图象与x轴有两个交点,
∴b2-4ac>0,故本选项错误;
故选B.
考点:二次函数图象与系数的关系.
科目:初中数学 来源: 题型:单选题
把抛物线y=x2向左平移1个单位,所得的新抛物线的函数表达式为( )
A.y=x2+1 | B.y=(x+1) 2 | C.y=x2-1 | D.y=(x-1) 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是( )
A.①② | B.②③ | C.①②④ | D.②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
在直角坐标系中,抛物线=2x2图像不动,如果把X轴向下平移一个单位,把Y轴向右平移3个单位,则此时抛物线的解析式为( )
A.y=2(x+3)2+1 | B.y=2(x+1)2-3 |
C.y=2(x-3)2+1 | D.y=2(x-1)2+3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com