精英家教网 > 初中数学 > 题目详情

如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为多少秒.


  1. A.
    2
  2. B.
    数学公式
  3. C.
    2或6
  4. D.
    数学公式
D
分析:分两种情况:⊙P在直线x=2的左边和⊙P在直线x=2的右边两种情况.下面以第一种情况为例,分析一下解题思路:如图1,通过相似三角形:△AQ′P′∽△AQP,的对应边成比例得到比例式=,即=,从而求得AP′=2,则易求PP′的长度.同理,当⊙P在直线x=2的右边时,可以求得PP′的另一长度.
解答:解:设直线y=2x与x=2交于点A.则A(2,4).
∵P(-3,-6),
∴AP=5
假设⊙P与直线x=2相切于点Q′,连接P′Q′.则P′Q′⊥AQ′.
过点P作PQ⊥AQ′于点Q.则P′Q′∥PQ.
∴△AQ′P′∽△AQP,
==
解得AP′=2
①如图1,当⊙P在直线x=2的左边时.
PP′=AP-AP′=3
则该圆运动的时间为3÷1=3(秒);
②如图2,当⊙P在直线x=2的右边时.
PP′=AP+AP′=7
则该圆运动的时间为7÷1=7(秒);
综上所述,该圆运动的时间为3秒或7秒.
故选D.
点评:本题考查了一次函数综合题.解题时,主要利用了直线与圆相切时圆心与直线的距离关系,难度不大,难点在于要分⊙P在直线x=2的左边与右边两种情况进行讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,P为正比例函数y=
32
x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).
(1)求⊙P与直线x=2相切时点P的坐标.
(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•温州二模)如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为(  )秒.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正比例函数y=
3
2
x
图象上的一个动点,⊙P的半径为3,当⊙P与直线x=2相切时,则点P的坐标为
(5,
15
2
)或(-1,-
3
2
(5,
15
2
)或(-1,-
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正比例函数y=
34
x
上的一个动点,⊙P的半径为2,设点P的坐标为(m,n).
(1)求⊙P与直线x=4相切时m、n的值;
(2)写出⊙P与直线x=4相交、相离时m的取值范围;
(3)若⊙P从原点出发,以每秒1个单位的速度沿直线l:向右上方向运动,同时圆的半径逐渐增大,半径r与运动时间t(秒)的关系为r=t+2.则当t取何值时,⊙P与直线l相切?(本大题不必写过程,直接写出结论)

查看答案和解析>>

科目:初中数学 来源:2006年吉林省长春市中考数学试卷(解析版) 题型:解答题

(2006•长春)如图,P为正比例函数y=x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).
(1)求⊙P与直线x=2相切时点P的坐标.
(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.

查看答案和解析>>

同步练习册答案